A HIGH FIGURE OF MERIT P-TYPE FeNbTiSb THERMOELECTRIC MATERIAL AND THE PREPARATION METHOD THEREOF
    12.
    发明申请
    A HIGH FIGURE OF MERIT P-TYPE FeNbTiSb THERMOELECTRIC MATERIAL AND THE PREPARATION METHOD THEREOF 审中-公开
    高性能P型FeNbTiSb热电材料及其制备方法

    公开(公告)号:US20160141480A1

    公开(公告)日:2016-05-19

    申请号:US14900132

    申请日:2014-05-27

    CPC classification number: H01L35/18 H01L35/34

    Abstract: The present invention discloses a type of high figure of merit p-type FeNbTiSb thermoelectric material, whose composition is FeNb1-xTixSb, wherein x=0.06˜0.24. The present invention also discloses the method to prepare these p-type FeNbTiSb thermoelectric materials. The ingots with nominal composition FeNb1-xTixSb are prepared by levitation melting of stoichiometric amounts of Fe, Nb, Ti and Sb under an argon atmosphere. The obtained ingots are mechanically milled to get submicron-scale powders. The obtained powders are compacted by spark plasma sintering to obtain the final bulk p-type FeNbTiSb thermoelectric materials. The compositional elements of these p-type FeNbTiSb thermoelectric materials are abundant in the earth crust. The p-type thermoelectric materials also shows good high temperature stability and the preparation method are simple and high-yield. Therefore, the industrial production cost would be relatively cheap. The maximum zT value of the p-type thermoelectric materials is 1.1 at 1100K, which is the highest value among the p-type Half-Heusler system.

    Abstract translation: 本发明公开了一种高品质p型FeNbTiSb热电材料,其组成为FeNb1-xTixSb,其中x = 0.06〜0.24。 本发明还公开了制备这些p型FeNbTiSb热电材料的方法。 标称组成为FeNb1-xTixSb的锭通过在氩气氛下悬浮熔化化学计量的Fe,Nb,Ti和Sb来制备。 将获得的锭机械研磨以得到亚微米级粉末。 通过放电等离子体烧结将得到的粉末压实,得到最终体积p型FeNbTiSb热电材料。 这些p型FeNbTiSb热电材料的组成元素在地壳中是丰富的。 p型热电材料也具有良好的高温稳定性,制备方法简单高产。 因此,工业生产成本相对便宜。 p型热电材料的最大zT值在1100K时为1.1,这是p型Half-Heusler系统中的最高值。

    THERMOELECTRIC MODULE (VARIANTS)
    14.
    发明申请
    THERMOELECTRIC MODULE (VARIANTS) 审中-公开
    热电模块(VARIANTS)

    公开(公告)号:US20160005946A1

    公开(公告)日:2016-01-07

    申请号:US14764059

    申请日:2014-02-20

    CPC classification number: H01L35/32 H01L35/10 H01L35/18 H01L35/30

    Abstract: The invention relates to thermoelectric devices and can be used in a variety of devices which utilize thermoelectric modules. A thermoelectric module containing n and p-type conductivity semiconducting branches, connected by means of switching buses into an electric circuit, and a protective polymer coating. The protective polymer coating is applied to the interconnected branches and buses, and the coating is an electrodepositable polymer varnish-paint composition modified with a fluoroelastomer latex.

    Abstract translation: 本发明涉及热电装置,并且可用于利用热电模块的各种装置中。 包含通过开关总线连接到电路中的n和p型导电半导体分支的热电模块和保护性聚合物涂层。 将保护性聚合物涂层施加到互连的分支和总线上,并且涂层是用含氟弹性体胶乳改性的可电沉积的聚合物漆涂料组合物。

    THERMOELECTRIC CONVERSION MODULE
    16.
    发明申请
    THERMOELECTRIC CONVERSION MODULE 有权
    热电转换模块

    公开(公告)号:US20150340582A1

    公开(公告)日:2015-11-26

    申请号:US14499396

    申请日:2014-09-29

    CPC classification number: H01L35/04 H01L35/08 H01L35/18 H01L35/32

    Abstract: A thermoelectric conversion module is disclosed that corrects the difference in thermal resistance between a P-type thermoelectric conversion member and an N-type thermoelectric conversion member. In this thermoelectric conversion module, since insulators included in the P-type thermoelectric conversion member and the N-type thermoelectric conversion member have a different thermal resistance, it is possible to correct the difference in thermal resistance between the P-type thermoelectric conversion element and the N-type thermoelectric conversion element.

    Abstract translation: 公开了一种校正P型热电转换构件和N型热电转换构件之间的热阻差的热电转换模块。 在该热电转换模块中,由于包含在P型热电转换元件和N型热电转换元件中的绝缘体具有不同的热阻,所以可以校正P型热电转换元件与 N型热电转换元件。

    REPLICATED THERMOELECTRIC DEVICES
    17.
    发明申请
    REPLICATED THERMOELECTRIC DEVICES 审中-公开
    替代热电装置

    公开(公告)号:US20150325773A1

    公开(公告)日:2015-11-12

    申请号:US14704569

    申请日:2015-05-05

    Applicant: Sheetak Inc.

    Inventor: Uttam GHOSHAL

    CPC classification number: H01L35/34 H01L35/16 H01L35/18 H01L35/32

    Abstract: A method of creating a replicated thermoelectric device includes preparing a single thermoelectric device for division. The single thermoelectric device including a plurality of thermoelements positioned between a first substrate and a second substrate. The method further includes dividing the single thermoelectric device to form a replicated thermoelectric device such that the cooling power of the replicated thermoelectric cooling device is substantially equal to twice a cooling power of the single thermoelectric device.

    Abstract translation: 制造复制热电装置的方法包括制备用于划分的单个热电装置。 该单个热电装置包括位于第一基板和第二基板之间的多个热电元件。 该方法还包括分离单个热电装置以形成复制的热电装置,使得复制的热电冷却装置的冷却功率基本上等于单个热电装置的冷却功率的两倍。

    High efficiency thermoelectric materials based on metal/semiconductor nanocomposites
    19.
    发明授权
    High efficiency thermoelectric materials based on metal/semiconductor nanocomposites 有权
    基于金属/半导体纳米复合材料的高效热电材料

    公开(公告)号:US09136456B2

    公开(公告)日:2015-09-15

    申请号:US11763326

    申请日:2007-06-14

    Abstract: Composite epitaxial materials that comprise semimetallic ErAs nanoparticles or nanoislands epitaxially embedded in a semiconducting In0.53Ga0.47As matrix both as superlattices and randomly distributed throughout the matrix are disclosed. The presence of these particles increases the free electron concentration in the material while providing scattering centers for phonons. Electron concentration, mobility, and Seebeck coefficient of these materials are discussed and their potential for use in thermoelectric power generators is postulated. These composite materials in accordance with the present invention have high electrical conductivity, low thermal conductivity, and a high Seebeck coefficient. The ErAs nanoislands provides additional scattering mechanism for the mid to long wavelength phonon—the combination reduces the thermal conductivity below the alloy limit.

    Abstract translation: 公开了包含作为超晶格并随机分布在整个矩阵中的半导体In 0.53 Ga 0.47 As矩阵的外延嵌入的半金属ErAs纳米颗粒或纳米晶体的复合外延材料。 这些颗粒的存在增加了材料中的自由电子浓度,同时为声子提供散射中心。 讨论了这些材料的电子浓度,迁移率和塞贝克系数,并假设它们在热电发电机中的使用潜力。 根据本发明的这些复合材料具有高导电性,低热导率和高塞贝克系数。 ErAs nanoislands为中长波长声子提供了额外的散射机制,该组合降低了导热系数低于合金极限。

Patent Agency Ranking