摘要:
A thermodynamic engine is configured to convert heat provided in the form of a temperature difference to a nonheat form of energy. Heat is directed through a heating loop in thermal contact with a first side of the thermodynamic engine. A second side of the thermodynamic engine is coupled to an environmental cooling loop in thermal contact with an environmental cooling device. The thermodynamic engine is operated to dispense heat from the second side of the thermodynamic engine through the environmental cooling loop into the environmental cooling device. Operation of the thermodynamic engine thereby generates the nonheat form of energy from the temperature difference established between the first side and the second side of the thermodynamic engine.
摘要:
The hot-gas engine comprises a cylinder, a working piston which together with a cylinder cover delimits a cylinder space designed to accommodate a working medium, a displacement piston which divides the cylinder space into a first and a second working space, as well as a heating device for heating device for heating up the working medium contained in the first working space, and a cooling device for cooling the heated working medium. The working spaces are connected so as to be communicating by way of a regenerator arranged in the displacement piston. The heating device comprises a heating area on the end wall of the working piston, and a heating arrangement associated with the working piston. The cooling device comprises an injection device for feeding liquefied working medium into the first working space. This design provides improved heat supply to the working medium contained in the cylinder, and further provides direct cooling of said working medium. At the same time, a simpler and compact construction of the hot-gas engine can be achieved.
摘要:
A heat machine comprising a displacer reciprocating within a housing. The displacer incorporates first and second independent, co-axial, overlapping regenerators. A first working volume is formed between the displacer and the housing at a hot end of the heat machine. Second and third working volumes are formed between the displacer and the housing at a cold end of the heat machine. A partition separates the second and third working volumes. A gas flow path exists from the first working volume to the third working volume via the first regenerator, the second working volume, a gas path within the partition, and the second regenerator.
摘要:
An internal thermal exchanger engine which, in one embodiment, includes a cylinder having side walls and an enclosed lower end, with a piston mounted for reciprocal movement within the cylinder, and with a heat exchanger reciprocally mounted within the cylinder between the piston and the lower end of the cylinder. A gas phase fluid is enclosed between the piston and the lower end of the cylinder. The heat exchanger, which has perforated end portions, contains a foraminous heat conductive material distributed throughout the entire volume of the heat exchanger, thus allowing the gas phase fluid to pass freely through the heat exchanger as the heat exchanger moves between the piston and the lower end of the cylinder. A solenoid mounted on the piston operates an exchanger rod secured to the heat exchanger so as to cause the heat exchanger to move reciprocally within the cylinder. A combustion chamber is provided at the lower end of the cylinder to provide a source of heat.
摘要:
Provided is a thermally efficient Stirling cycle engine including: a casing; a cylinder housed within the casing; a piston reciprocatable inside said cylinder; a displacer reciprocatable with a phase difference relative to the piston; a compression chamber defined between the piston and the displacer; an expansion chamber arranged on a first side of the displacer with a second side thereof opposite to the compression chamber; a heat exhausting unit arranged in the neighborhood of the compression chamber; a heat absorbing unit arranged in the neighborhood of the expansion chamber; a regenerator arranged between the heat exhausting unit and the heat absorbing unit; and a heat exhausting chamber defined between an outer surface of the casing and an inner surface of the heat exhausting unit, said heat exhausting chamber in communication with the compression chamber and the regenerator respectively through a first passage and a second passage provided in the casing.
摘要:
A heat engine includes: a high-temperature space portion and a low-temperature space portion, each of which has a working gas with a different temperature range from each other; a regenerator provided between both of the space portions; a first piston configured to cause volumetric changes of the working gases in the space portions and transmit motive energy on receipt of pressure changes of the working gases; and a second piston and a third piston configured to transfer the working gases between both of the space portions and move with a 180° phase difference from each other with respect to the regenerator. The second piston is slidably housed in a cylinder portion included in the first piston. Heat and motive energy are exchanged by using the volumetric changes in both of the space portions, as well as by using the transfer of the working gases.
摘要:
A thermodynamic engine is configured to convert heat provided in the form of a temperature difference to a nonheat form of energy. Heat is directed through a heating loop in thermal contact with a first side of the thermodynamic engine. A second side of the thermodynamic engine is coupled to an environmental cooling loop in thermal contact with an environmental cooling device. The thermodynamic engine is operated to dispense heat from the second side of the thermodynamic engine through the environmental cooling loop into the environmental cooling device. Operation of the thermodynamic engine thereby generates the nonheat form of energy from the temperature difference established between the first side and the second side of the thermodynamic engine.
摘要:
Methods and apparatus are disclosed for generating power. A thermodynamic air engine is configured to convert heat provided in the form of a temperature differential to mechanical energy. The thermodynamic air engine has a working fluid and a displacer adapted to move through the working fluid. The temperature differential is established across the thermodynamic air engine between a first side of the engine and a second side of the engine. The displacer is directly actuated to move the displacer cyclically through the working fluid in accordance with a defined motion pattern.
摘要:
A drive mechanism for a Stirling engine includes a piston rod, a displacer rod, a first crankshaft and a second crankshaft. The piston rod has a first end and a second end. The first end of the piston rod is configured to be coupled to a power piston of the Stirling engine. The displacer rod has a first end and a second end, the first end being configured to be coupled to a displacer piston of the Stirling engine. A rhombic drive mechanism comprises a plurality of pivotally connected connection members. The rhombic drive mechanism is configured to convert the linear movement of the piston rod to rotational movement of the first and second crankshaft and to convert linear movement of the piston rod to movement of the displacer rod. A guide is configured to substantially prevent lateral motion while allowing axial movement of at least one of the displacer rod and the piston rod.
摘要:
The hot-gas engine comprises a cylinder, a working piston which together with a cylinder cover delimits a cylinder space designed to accommodate a working medium, a displacement piston which divides the cylinder space into a first and a second working space, as well as a heating device for heating device for heating up the working medium contained in the first working space, and a cooling device for cooling the heated working medium. The working spaces are connected so as to be communicating by way of a regenerator arranged in the displacement piston. The heating device comprises a heating area on the end wall of the working piston, and a heating arrangement associated with the working piston. The cooling device comprises an injection device for feeding liquefied working medium into the first working space. This design provides improved heat supply to the working medium contained in the cylinder, and further provides direct cooling of said working medium. At the same time, a simpler and compact construction of the hot-gas engine can be achieved.