Abstract:
The present invention provides a fabric having soil resistance and no oil stains after wiping and a manufacturing method thereof. The fabric of the present invention comprises an underlayer and a soil-resistant protection film, which can effectively prevent oil corrosion, penetration, and permeation of the surface of the fabric, thus resulting in no oil stains after wiping. The manufacturing method of the present invention comprises the steps of dyeing, setting, performing an underlayer surface treatment to form an underlayer on a surface of the fabric, and performing a soil resistance processing treatment to form a soil-resistant protection film on the surface of the underlayer.
Abstract:
The invention relates to the use of microparticles hydrophobized with fluorosilanes or -siloxanes for producing surfaces which have self-cleaning and also lactophobic, oleophobic and lipophobic properties. The use of microparticles hydrophobized with fluorosilanes in the known processes for producing self-cleaning surfaces makes it possible to produce surfaces which have not only self-cleaning properties but also lipophobic, oleophobic and lactophobic properties. Articles finished with such surfaces are especially easy to clean easily with removal of oil-, grease- or milk-containing soilings. The inventive use is therefore especially suitable for producing industrial textiles, workwear and children's clothing.
Abstract:
The present invention relates to textile sheetlike constructions having an enhanced watertightness and also to a process for producing them. It was found that, surprisingly, the watertightness of porous textile sheetlike constructions is enhanced when a coating of hydrophobic particles having an average particle size in the range from 0.02 to 100 μm is applied to the surfaces of the fibers. The textile sheetlike constructions can be used for example as textile building materials or for producing tents, umbrellas or the like.
Abstract:
A filter for separating water from hydrocarbon fuel includes fibers rendered hydrophobic with a silane surface treatment preceded by contact with a cationic surfactant in an aromatic hydrocarbon solvent.
Abstract:
A process of fabricating the composition coating may include selecting a textile material substrate, utilizing a sol-gel comprising a silane or silane derivative and metal oxide precursor to coat the substrate, and optionally coating the substrate with a hydrophobic chemical agent and/or other chemical agents to create a surface with nanoscopic or microscopic features. The process may utilize an all solution process or controlled environment for fabricating a composition coating that prevent wetting or staining of a substrate. The composition coatings for treating textile materials improve soil-resistance and stain-resistance of the textile materials. The composition coatings and their use for treating textile materials can also impart water repellency, oil repellency, ease of cleaning stains and removing particulates. In addition, the composite solution may impart additional properties such as physical strength to the textile whilst retaining the original appearance.