Abstract:
The present invention provides a polarization maintaining optical fiber of which polarization crosstalk characteristic is not deteriorated after fusing two or more polarization maintaining optical fibers, and provides a method for producing a preform thereof. The polarization maintaining optical fiber includes two stress applying portions disposed in a cladding around a core, in which an angle formed by a line connecting the center of one of the stress applying portions with the center of the core and a line connecting the center of the other stress applying portion with the center of the core is 3 degrees or less. The preform is produced by forming one insertion hole in a cladding element and then rotating the preform 180 degrees around a core element without moving the drilling tool, followed by forming the other insertion hole in the cladding element and then inserting stress applying elements into the insertion holes.
Abstract:
An optical fiber for preserving the plane of polarization including a cladding and a stress imparting part disposed in the cladding, the stress imparting part comprising a base material including B2O3. The average concentration of B2O3 in the base material of the stress imparting part is in a range between about 17 and 21 wt. %, and the maximum concentration of B2O3 in the base material is in a range between about 17 and 22 wt. %. The optical fiber has excellent polarization plane preserving properties, and no concave portion is generated in its stress imparting part even under wet heat conditions.
Abstract translation:一种用于保持包括包层的偏振平面的光纤和设置在包层中的应力施加部分,所述应力赋予部分包括包含B 2 O 3的基底材料。 应力赋予部的基材中的B 2 O 3的平均浓度在约17〜21重量%的范围内。 %,并且基材中B 2 O 3的最大浓度在约17和22重量%之间的范围内。 %。 该光纤具有优异的偏振面保存特性,即使在湿热条件下也不会在其应力赋予部中产生凹部。
Abstract:
A preform for a polarization retaining optical fiber is produced by making at least two bores symmetrically around a center axis of a preform comprising a core part and a cladding part which surrounds the core part, decreasing a diameter of one end of each bore, or connecting a glass tube to one end of the preform, the glass tube having a part with a smaller inner diameter near its end which is connected to the preform, inserting a first glass rod, a stressing member and a second glass rod in this order from the other end of each bore or from an end of each bore which is remote from the connected glass tube, contacting the first glass rod to the diameter-decreased end of each bore or to the part with a smaller inner diameter of the glass tube, and heating and fusing the second glass rod to the preform.
Abstract:
This invention relates to a method of drawing twist-free optical fibers; it is particularly useful for drawing polarization retaining single-mode optical fibers having azimuthal inhomogeneities. There is applied to the fiber, during the drawing thereof, a coating having a non-circular cross-section, the azimuthal inhomogeneity of the fiber being positioned in a substantially constant orientation with respect to the non-circular cross-section of the coating. In another embodiment, a plurality of fibers having azimuthal inhomogeneities are drawn from a plurality of preforms that are properly oriented in the draw furnace. The fibers are drawn through the same coater so that the azimuthal inhomogeneity of each fiber is oriented in a substantially constant relationship with respect to the azimuthal inhomogeneities of the remaining fibers in the coating.
Abstract:
A polarization-maintaining optical fiber includes at least one polarization maintaining core, a first cladding surrounding the at least one polarization maintaining core, and a second cladding surrounding the first cladding. The at least one polarization maintaining core includes a core and a pair of low-refractive-index portions each having a refractive index lower than a refractive index of the core. In a cross section, at least a portion of an outer periphery of each of the pair of low-refractive-index portions is in contact with the core, and an outer periphery of the core, excluding portions each being in contact with the low-refractive-index portions, has a circular shape. A maximum value of an absolute value of a residual stress in the cross section is 100 MPa or less. A mode-field flattening f is 0.05 to 0.40 at any wavelength within a range of 850 nm to 1625 nm.
Abstract:
A double-clad (DC) polarization-maintaining (PM) optical fiber comprises a core, an inner cladding, an outer cladding, and stress rods. The core has a core refractive index (ncore). The inner cladding is located radially exterior to the core and has an inner cladding refractive index (n1), which is less than ncore. The stress rods are located in the inner cladding, and each stress rod has a stress rod refractive index (n2), which is substantially matched to n1. The outer cladding is located radially exterior to the inner cladding. The outer cladding has an outer cladding refractive index (nout), which is less than n1.
Abstract:
A hollow core fiber has a cladding comprising a matrix of cells, wherein each cell comprises a hole and a wall surrounding the hole. The fiber further has a hollow core region comprising a core gap in the matrix of cells, wherein the core gap spans a plurality of cells and has a boundary defined by the interface of the core gap. The matrix of cells comprises a plurality of lattice cells, and a plurality of defect cells characterised by at least one difference in at least one property from that of the lattice cells. The cells at the core region boundary include lattice cells and defect cells that are arranged in a pattern so as to produce birefringence in a light propagating through the hollow core fiber. Further described is a technique for making the fiber.
Abstract:
A double-clad (DC) polarization-maintaining (PM) optical fiber comprises a core, an inner cladding, an outer cladding, and stress rods. The core has a core refractive index (ncore). The inner cladding is located radially exterior to the core and has an inner cladding refractive index (n1), which is less than ncore. The stress rods are located in the inner cladding, and each stress rod has a stress rod refractive index (n2), which is substantially matched to n1. The outer cladding is located radially exterior to the inner cladding. The outer cladding has an outer cladding refractive index (nout), which is less than n1.
Abstract:
A hollow core fiber has a cladding comprising a matrix of cells, wherein each cell comprises a hole and a wall surrounding the hole. The fiber further has a hollow core region comprising a core gap in the matrix of cells, wherein the core gap spans a plurality of cells and has a boundary defined by the interface of the core gap. The matrix of cells comprises 8 plurality of lattice cells, and a plurality of defect cells characterised by at least one difference in at least one property from that of the lattice cells. The cells at the core region boundary include lattice cells and defect cells that are arranged in a pattern that define two orthogonal axes of reflection symmetry, so as to produce birefringence in a light propagating through the hollow core fiber.
Abstract:
According to one embodiment a method of making optical fibers comprises: (i) manufacturing a core cane; (ii) situating a plurality of microstructures selected from rods, air filled tubes and glass filed tubes and placing said microstructures adjacent to the core cane, said microstructures forming no more than 3 layers; (iii) placing the core cane with said adjacent microstructures inside a holding clad tube; and (iv) placing interstitial cladding rods inside the holding (clad) tube, thereby forming an assembly comprising a tube containing a core cane, a plurality of microstructures and interstitial cladding rods. The assembly is then drawn into a microstructured cane and an optical fiber is drawn from the microstructured cane. According to several embodiments, the method of making an optical fiber includes providing at least one air hole and at least one stress rod adjacent to the core.