Abstract:
An object of the present invention is to provide a silicon spin transport device manufacturing method and silicon spin transport device whereby improved voltage output characteristics can be obtained. The silicon spin transport device manufacturing method comprises: a first step of patterning a silicon film by wet etching and forming a silicon channel layer; and a second step of forming a magnetization free layer and a magnetization fixed layer, which are apart from each other, on the silicon channel layer.
Abstract:
An object is to provide a magnetic sensor permitting an increase in potential output. The magnetic sensor has a channel layer, a magnetization free layer provided on a first portion of the channel layer and configured to detect an external magnetic field, and a magnetization fixed layer provided on a second portion different from the first portion of the channel layer, and a cross-sectional area of the magnetization fixed layer in a surface opposed to the channel layer is larger than a cross-sectional area of the magnetization free layer in a surface opposed to the channel layer.
Abstract:
A magnetic sensor comprises a nonmagnetic conductive layer, a free magnetization layer disposed on a first part of the nonmagnetic conductive layer, a fixed magnetization layer disposed on a second part of the nonmagnetic conductive layer different from the first part, upper and lower first magnetic shield layers opposing each other through the nonmagnetic conductive layer and free magnetization layer interposed therebetween, upper and lower second magnetic shield layers opposing each other through the nonmagnetic conductive layer and fixed magnetization layer interposed therebetween, and an electrically insulating layer disposed between the lower second magnetic shield layer and the nonmagnetic conductive layer, while the lower first magnetic shield layer is arranged closer to the nonmagnetic conductive layer than is the lower second magnetic shield layer.
Abstract:
The spin transport device includes a semiconductor layer; a first ferromagnetic layer provided on the semiconductor layer via a first tunnel barrier layer; a second ferromagnetic layer provided on the semiconductor layer via a second tunnel barrier layer so as to be divided from the first ferromagnetic layer; and a first wire which generates, upon application of an electric current, a magnetic field in a region between the first ferromagnetic layer and the second ferromagnetic layer in the semiconductor layer.
Abstract:
A magnetic sensor comprises a nonmagnetic conductive layer, a free magnetization layer disposed on a first part of the nonmagnetic conductive layer, a fixed magnetization layer disposed on a second part of the nonmagnetic conductive layer different from the first part, upper and lower first magnetic shield layers opposing each other through the nonmagnetic conductive layer and free magnetization layer interposed therebetween, upper and lower second magnetic shield layers opposing each other through the nonmagnetic conductive layer and fixed magnetization layer interposed therebetween, a first electrically insulating layer disposed between the lower second magnetic shield layer and nonmagnetic conductive layer, and a first electrode layer for electrically connecting the lower second magnetic shield layer and nonmagnetic conductive layer to each other, while the fixed magnetization layer and first electrode layer oppose each other through the nonmagnetic conductive layer.
Abstract:
A magnetic sensor comprises a support; a nonmagnetic conductive layer disposed on the support; a fixed magnetization layer disposed on a first part of the nonmagnetic conductive layer and on the support; a free magnetization layer disposed on a second part of the nonmagnetic conductive layer different from the first part and on the support; and a nonmagnetic low resistance layer, disposed on a part overlapping the nonmagnetic conductive layer in at least one of the fixed magnetization layer and free magnetization layer, having an electrical resistivity lower than that of the one layer.
Abstract:
A spin transport element 1 has a first ferromagnet 12A, a second ferromagnet 12B, a channel 7 extending from the first ferromagnet 12A to the second ferromagnet 12B, a magnetic shield S1 covering the channel 7, and an insulating film provided between the channel 7 and the magnetic shield S1.