Abstract:
A method and an apparatus are provided for retrieving keyword. The apparatus configures at least two types of language models in a model file, where each type of language model includes a recognition model and a corresponding decoding model; the apparatus extracts a speech feature from the to-be-processed speech data; performs language matching on the extracted speech feature by using recognition models in the model file one by one, and determines a recognition model based on a language matching rate; and determines a decoding model corresponding to the recognition model; decoding the extracted speech feature by using the determined decoding model, and obtains a word recognition result after the decoding; and matches a keyword in a keyword dictionary and the word recognition result, and outputs a matched keyword.
Abstract:
A method and an apparatus are provided for retrieving keyword. The apparatus configures at least two types of language models in a model file, where each type of language model includes a recognition model and a corresponding decoding model; the apparatus extracts a speech feature from the to-be-processed speech data; performs language matching on the extracted speech feature by using recognition models in the model file one by one, and determines a recognition model based on a language matching rate; and determines a decoding model corresponding to the recognition model; decoding the extracted speech feature by using the determined decoding model, and obtains a word recognition result after the decoding; and matches a keyword in a keyword dictionary and the word recognition result, and outputs a matched keyword.
Abstract:
Systems and methods are provided for adding punctuations. For example, one or more first feature units are identified in a voice file taken as a whole; the voice file is divided into multiple segments: one or more second feature units are identified in the voice file; a first aggregate weight of first punctuation states of the voice file and a second aggregate weight of second punctuation states of the voice file are determined, using a language model established based on word separation and third semantic features; a weighted calculation is performed to generate a third aggregate weight based on at least information associated with the first aggregate weight and the second aggregate weight; and one or more final punctuations are added to the voice file based on at least information associated with the third aggregate weight.
Abstract:
An automatic speech recognition method includes at a computer having one or more processors and memory for storing one or more programs to be executed by the processors, obtaining a plurality of speech corpus categories through classifying and calculating raw speech corpus; obtaining a plurality of classified language models that respectively correspond to the plurality of speech corpus categories through a language model training applied on each speech corpus category; obtaining an interpolation language model through implementing a weighted interpolation on each classified language model and merging the interpolated plurality of classified language models; constructing a decoding resource in accordance with an acoustic model and the interpolation language model; and decoding input speech using the decoding resource, and outputting a character string with a highest probability as a recognition result of the input speech.
Abstract:
A parallel data processing method based on multiple graphic processing units (GPUs) is provided, including: creating, in a central processing unit (CPU), a plurality of worker threads for controlling a plurality of worker groups respectively, the worker groups including one or more GPUs; binding each worker thread to a corresponding GPU; loading a plurality of batches of training data from a nonvolatile memory to GPU video memories in the plurality of worker groups; and controlling the plurality of GPUs to perform data processing in parallel through the worker threads. The method can enhance efficiency of multi-GPU parallel data processing. In addition, a parallel data processing apparatus is further provided.
Abstract:
A method of processing information content based on a Chinese language model is performed at a computer, the method including: identifying a plurality of expressions in the information content extracted from a speech input through speech recognition that is queued to be processed; dividing the expressions into a plurality of characteristic units according to semantic features and predetermined characteristics associated with each characteristic unit, each including a subset of the expressions and the predetermined characteristics at least including a respective integer number of expressions that are included in the characteristic unit; extracting, from the Chinese language model, a plurality of probabilities for punctuation marks associated with each characteristic unit; and in accordance with the probabilities, associating a respective punctuation mark with each characteristic unit included in the information content. The method further comprises adding punctuation marks based on a weight determined for each punctuation mark.
Abstract:
An automatic speech recognition method includes at a computer having one or more processors and memory for storing one or more programs to be executed by the processors, obtaining a plurality of speech corpus categories through classifying and calculating raw speech corpus; obtaining a plurality of classified language models that respectively correspond to the plurality of speech corpus categories through a language model training applied on each speech corpus category; obtaining an interpolation language model through implementing a weighted interpolation on each classified language model and merging the interpolated plurality of classified language models; constructing a decoding resource in accordance with an acoustic model and the interpolation language model; and decoding input speech using the decoding resource, and outputting a character string with a highest probability as a recognition result of the input speech.
Abstract:
The present application discloses a method, an electronic system and a non-transitory computer readable storage medium for recognizing audio commands in an electronic device. The electronic device obtains audio data based on an audio signal provided by a user and extracts characteristic audio fingerprint features from the audio data. The electronic device further determines whether the corresponding audio signal is generated by an authorized user by comparing the characteristic audio fingerprint features with an audio fingerprint model for the authorized user and with a universal background model that represents user-independent audio fingerprint features, respectively. When the corresponding audio signal is generated by the authorized user of the electronic device, an audio command is extracted from the audio data, and an operation is performed according to the audio command.
Abstract:
A computer-implemented method is performed at a server having one or more processors and memory storing programs executed by the one or more processors for authenticating a user from video and audio data. The method includes: receiving a login request from a mobile device, the login request including video data and audio data; extracting a group of facial features from the video data; extracting a group of audio features from the audio data and recognizing a sequence of words in the audio data; identifying a first user account whose respective facial features match the group of facial features and a second user account whose respective audio features match the group of audio features. If the first user account is the same as the second user account, retrieve the sequence of words associated with the user account and compare the sequences of words for authentication purpose.