Abstract:
Methods of accessing and ablating abnormal epithelium tissue in an alimentary canal are provided. The methods can include steps of (i) inserting a vacuum source comprising one or more suction ports into an alimentary canal; (ii) inserting an operative element comprising a conduit for a tissue ablation source into the alimentary canal; (iii) positioning the vacuum source and the operative element proximate a portion of the alimentary canal having a site of abnormal tissue to be ablated; (iv) applying a vacuum to at least one of each suction port to draw the tissue against the operative element; and (v) applying the tissue ablation source to the tissue through the conduit to effect tissue ablation.
Abstract:
Systems and methods manipulate a support structure to form a composite lesion in a tissue region at or near a sphincter. The support structure carries an array of electrodes attachable to a source of energy capable of heating tissue when transmitted by the electrodes. The systems and methods advance the electrodes to penetrate the tissue region and form, when the energy is transmitted, a first pattern of lesions. The systems and methods retract the electrodes, and shift the position of the electrodes, either rotationally, or axially, or both rotationally and axially. The systems and methods advance the electrodes a second time to form, when the energy is transmitted, a second pattern of lesions either rotationally or axially or both rotationally and axially shifted from the first pattern of lesions. The first and second patterns of lesion together comprise the composite lesion.
Abstract:
Methods of accessing and ablating abnormal epithelium tissue in an alimentary canal are provided. The methods can include steps of (i) inserting an operative element into an alimentary canal such that the proximate to a portion of the alimentary canal having tissue to be ablated; and (ii) using the operative element to apply cryogenic ablation to a site of abnormal tissue.
Abstract:
A method for treating a sphincter provides a polymer material having a liquid state. The method also provides a catheter having a distal end, a tissue piercing device carried by the distal end, and an energy delivery device coupled to the tissue piercing device. The tissue piercing device has a lumen. The method introduces the catheter into an esophagus and pierces an exterior sphincter tissue surface within with the tissue piercing device. The method advances the tissue piercing device into an interior sphincter tissue site and conveys the polymer material while in a liquid state through the lumen into the interior sphincter tissue site. The method delivers energy to the tissue piercing device to transform the polymer material into a less liquid state within the interior sphincter tissue site, to thereby remodel the sphincter.
Abstract:
Methods treat a tissue region. In one arrangement, the methods deploy an electrode on a support structure in a tissue region at or near the cardia of the stomach. In one embodiment, the support structure has a proximal region and a distal region. The proximal region is enlarged in comparison to the distal region, and the electrode is carried by the enlarged proximal surface. The methods advance the electrode in a path to penetrate the tissue region and couple the electrode to a source of radio frequency energy to ohmically heat tissue and create a lesion in the tissue region.
Abstract:
Improved electrode assemblies for treating a tissue region at or near a sphincter comprise a support structure and an electrode carried by the support structure for advancement in a path to penetrate the tissue region. In one arrangement, the electrode has a non-cylindrical cross section selected to resist deflection when advanced to penetrate the tissue region. In another arrangement, the electrode includes a tissue stop to resist tissue penetration beyond a selected depth. In another arrangement, the electrode includes a proximal portion formed from a first material and a distal tissue penetrating portion formed of a second material different than the first material. The first material can comprise, e.g., stainless steel, and the second material can comprise, e.g., nickel titanium.
Abstract:
Assemblies for treating a tissue region at or near a sphincter have a support structure with a distal end and an electrode carried by the support structure for contact with the tissue region. A lumen in the support structure accommodates passage of a body through the support structure and beyond the distal end of the support structure. The body can comprise a guide wire to guide deployment of the support structure, or an endoscope to permit visualization of the support structure from beyond the distal end of the support structure.
Abstract:
Unified systems and methods enable control of the use and operation of a family of different treatment devices, to treat dysfunction in different regions of the body.
Abstract:
A system comprising a storage medium associated with a device for treating a tissue region, the device including a handle, a catheter tube extending from the handle, a temperature sensor and a basket including a plurality of spines, the spines carrying an electrode for delivering treatment energy to a tissue site. The temperature sensor senses temperature near a distal end of the electrode. The basket is movable between a non-expanded low profile condition and an expanded condition and the electrode is movable from a first position to an extended position. The storage medium is formatted to contain an identification code uniquely assigned to the device for registration of the device if absence of prior use is determined.
Abstract:
Unified systems and methods enable control of the use and operation of a family of different treatment devices, to treat dysfunction in different regions of the body.