Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable polarization a polarizing relay assembly arranged to selectively permit the scattered light having a selected polarization orientation to pass along a detector optical axis to a light detection unit in the detection subsystem. The system also features a collector output width varying subsystem for varying the width of an output slit in response to changes in the location of the location scanned on the workpiece.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable polarization a polarizing relay assembly arranged to selectively permit the scattered light having a selected polarization orientation to pass along a detector optical axis to a light detection unit in the detection subsystem. They system also features a collector output width varying subsystem for varying the width of an output slit in response to changes in the location of the location scanned on the workpiece.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable polarization a polarizing relay assembly arranged to selectively permit the scattered light having a selected polarization orientation to pass along a detector optical axis to a light detection unit in the detection subsystem. They system also features a collector output width varying subsystem for varying the width of an output slit in response to changes in the location of the location scanned on the workpiece.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable polarization a polarizing relay assembly arranged to selectively permit the scattered light having a selected polarization orientation to pass along a detector optical axis to a light detection unit in the detection subsystem. The system also features a collector output width varying subsystem for varying the width of an output slit in response to changes in the location of the location scanned on the workpiece.
Abstract:
An optical detection system (100) includes an optical element (116, 202, 502) that directs emission radiation (108), which traverses away from an optical collection path (122), to the path, wherein the emission radiation is emitted by a radiation sensitive material in a sample (204) under study in response to the material absorbing excitation radiation, and the emission radiation has a spectral characteristic that corresponds to the material.
Abstract:
An optical detection system includes a detector configured to detect a signal emitted from a sample carrier and generate an output indicative of the signal detected by the detector. The sample carrier emits the signal in response to the sample carrier being scanned by an excitation source, the emitted signal is indicative of a structural characteristic of the sample carrier, and the sample carrier includes bulk material, at least one material free chamber and a bulk material/chamber interface for each chamber. The optical detection system further includes a data evaluator that identifies the structural characteristic of the sample carrier based on the output of the detector and generates data indicative of the identified structural characteristic.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable polarization a polarizing relay assembly arranged to selectively permit the scattered light having a selected polarization orientation to pass along a detector optical axis to a light detection unit in the detection subsystem. They system also features a collector output width varying subsystem for varying the width of an output slit in response to changes in the location of the location scanned on the workpiece.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable scan speed beam scanning subsystem, preferably using an acousto-optic deflector, with beam compensation, so that variable scanning speeds can be achieved. Also included are methods and systems for improving the signal to noise ratio by use of scatter reducing complements, and a system and method for selectively and repeatedly scanning a region of interest on the surface in order to provide additional observations of the region of interest.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable scan speed beam scanning subsystem, preferably using an acousto-optic deflector, with beam compensation, so that variable scanning speeds can be achieved. Also included are methods and systems for improving the signal to noise ratio by use of scatter reducing complements, and a system and method for selectively and repeatedly scanning a region of interest on the surface in order to provide additional observations of the region of interest.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The system features a variable scan speed beam scanning subsystem, preferably using an acousto-optic deflector, with beam compensation, so that variable scanning speeds can be achieved. Also included are methods and systems for improving the signal to noise ratio by use of scatter reducing complements, and a system and method for selectively and repeatedly scanning a region of interest on the surface in order to provide additional observations of the region of interest.