Abstract:
An electronic device includes a substrate, a functional structural body formed on the substrate and a covering structure for defining a cavity part having the functional structural body disposed therein, wherein the covering structure is provided with a side wall provided on the substrate and comprising an interlayer insulating layer surrounding the cavity part and a wiring layer; a first covering layer covering an upper portion of the cavity part and having an opening penetrating through the cavity part and composed of a laminated structure including a corrosion-resistant layer; and a second covering layer for closing the opening.
Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
A micro-electro mechanical system (MEMS) switch includes a fixed electrode formed on a substrate, and a movable electric resistor formed on the substrate, the movable electric resistor serving as an electric resistor that divides an electric potential where the MEMS switch is set to a conduction state.
Abstract:
A resonator with a microeletromechanical system structure has a transistor with a gate electrode, a capacitor with an upper and lower electrode, a substrate, a first and second structure of the microelectromechanical system structure, a first silicon layer of the first structure and the upper electrode formed above the substrate, a second silicon layer of the second structure and the gate electrode unit formed above the substrate, and an insulating film formed above the capacitor and the transistor, the insulating film having an opening for placement of the second structure.
Abstract:
A method is for manufacturing a microelectromechanical system resonator having a semiconductor device and a microelectromechanical system structure unit formed on a substrate. The method includes: forming a lower electrode of an oxide-nitride-oxide capacitor unit included in the semiconductor device using a first silicon layer; forming, using a second silicon layer, a substructure of the microelectromechanical system structure unit and an upper electrode of the oxide-nitride-oxide capacitor unit included in the semiconductor device; and forming, using a third silicon layer, a superstructure of the microelectromechanical system structure unit and a gate electrode of a complementary metal oxide semiconductor circuit unit included in the semiconductor device.
Abstract:
An electronic device, including a substrate, a functional structure constituting a functional element formed on the substrate, and a cover structure forming a cavity portion in which the functional structure is disposed, is disclosed. In the electronic device, the cover structure includes a laminated structure of an interlayer insulating film and a wiring layer, the laminated structure being formed on the substrate in such a way that it surrounds the cavity portion, and the cover structure has an upside cover portion covering the cavity portion from above, the upside cover portion being formed with part of the wiring layer that is disposed above the functional structure.
Abstract:
An electronic device according to the invention includes: a substrate; an MEMS structure formed above the substrate; and a covering structure defining a cavity in which the MEMS structure is arranged, wherein the covering structure has a first covering layer covering from above the cavity and having a through-hole in communication with the cavity and a second covering layer formed above the first covering layer and closing the through-hole, the first covering layer has a first region located above at least the MEMS structure and a second region located around the first region, the first covering layer is thinner in the first region than in the second region, and a distance between the substrate and the first covering layer in the first region is longer than a distance between the substrate and the first covering layer in the second region.
Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
A resonator with a microeletromechanical system structure has a transistor with a gate electrode, a capacitor with an upper and lower electrode, a substrate, a first and second structure of the microelectromechanical system structure, a first silicon layer of the first structure and the upper electrode formed above the substrate, a second silicon layer of the second structure and the gate electrode unit formed above the substrate, and an insulating film formed above the capacitor and the transistor, the insulating film having an opening for placement of the second structure.