Abstract:
An electronic device is provided. The electronic device includes at least one first memory being nonvolatile and a processor configured to read a file from the first memory or to write a file on the first memory. The first memory stores instructions, the instructions, when executed, causing the processor to provide a software layer structure including a first virtual file system layer configured to interface with an application program layer, a compressed file system layer configured to compress at least a part of data of the written file or to decompress at least a part of data of the read file, a second virtual file system layer configured to manage the written or read file, and a first file system layer configured to read at least a part of the file from the first memory or to write at least a part of the file on the first memory.
Abstract:
Various examples of the present invention relate to an electronic device comprising: a graphic buffer for storing graphic information received from an application; a frame buffer for storing the graphic information to be displayed on a display; and a processor, wherein the processor is configured to: store, in the graphic buffer, first graphic information received from a first layer; store, in the frame buffer, second graphic information received from a second layer; store, in the frame buffer, the first graphic information stored in the graphic buffer; and simultaneously display the first graphic information and the second graphic information, stored in the frame buffer, through the display functionally connected with the processor. In addition, other examples identifiable through the specification are possible.
Abstract:
An electronic device includes a display displaying an execution screen of an application, a touch pad receiving a user input associated with control of the execution screen, and a processor controlling scroll processing of the execution screen. The processor is configured to divide the touch pad into a plurality of virtual regions and to add a first threshold value of a minimum magnitude for determining that the continuous user input is a scroll control input of the execution screen to the second coordinates when the user input is continuous from first coordinates of a first virtual region to second coordinates of a second virtual region adjacent to the first virtual region at a specified speed or more.
Abstract:
An electronic device includes a first graphic composer that composes first graphic data associated with a layer of a first composition type, a second graphic composer that composes second graphic data associated with a layer of a second composition type different from the first composition type. The electronic device also includes a processor that sets a composition type of each of a plurality of layers associated with at least one application to the first or second composition type, composes first graphic data corresponding to a layer set to the first composition type using the first graphic composer, compose the composed graphic data in the frame buffer and second graphic data corresponding to a layer set to the second composition type using the second graphic composer, and display the composed graphic data through a display connected with the electronic device.
Abstract:
Disclosed herein are a power supply apparatus, and an electric apparatus and a vacuum cleaner having the power supply apparatus. According to an aspect of the present disclosure, the power supply apparatus includes: a first power converter configured to convert a first Alternating Current (AC) voltage into a Direct Current (DC) voltage; a second power converter configured to drop the DC voltage output from the first power converter and transfer the dropped DC voltage to a power storage unit, and to boost a DC voltage of the power storage unit and output the boosted DC voltage; and a third power converter configured to convert a DC voltage among the DC voltage output from the first power converter and the boosted DC voltage output from the second power converter, into a second AC voltage, and to transfer the second AC voltage to a load.
Abstract:
Disclosed herein are a power supply apparatus, and an electric apparatus and a vacuum cleaner having the power supply apparatus. According to an aspect of the present disclosure, the power supply apparatus includes: a first power converter configured to convert a first Alternating Current (AC) voltage into a Direct Current (DC) voltage; a second power converter configured to drop the DC voltage output from the first power converter and transfer the dropped DC voltage to a power storage unit, and to boost a DC voltage of the power storage unit and output the boosted DC voltage; and a third power converter configured to convert a DC voltage among the DC voltage output from the first power converter and the boosted DC voltage output from the second power converter, into a second AC voltage, and to transfer the second AC voltage to a load.
Abstract:
A semiconductor light-emitting diode (LED) package is provided and includes a semiconductor LED chip having a surface on which a first electrode and a second electrode are formed; a first solder bump formed on the first electrode and a second solder bump formed on the second electrode, the first solder bump and the second solder bump protruding from the surface of the semiconductor LED chip; and a resin layer having a bottom portion that surrounds a first side surface of the first solder bump and a second side surface of the second solder bump and covers the surface of the semiconductor LED chip.
Abstract:
A manufacturing method of a light emitting diode (LED) and a manufacturing method of an LED module are provided. The manufacturing method of the LED may include manufacturing a plurality of LED chips, manufacturing a phosphor pre-form including a plurality of mounting areas for mounting the plurality of LED chips, applying an adhesive inside the phosphor pre-form, mounting each of the plurality of LED chips in each of the plurality of mounting areas, and cutting the phosphor pre-form to which the plurality of LED chips are mounted, into units including individual LED chips.