Abstract:
A portable communication device is provided, which includes a housing including a rear cover; a battery disposed in the housing; NFC circuitry; wireless charging circuitry; MST circuitry; an FPCB including a plurality of layers substantially parallel to each other, at least a portion of the FPCB being disposed between the battery and the rear cover; an NFC coil electrically connected with the NFC circuitry, the NFC coil including a first portion and a second portion formed at different layers of the FPCB; a wireless charging coil electrically connected with the wireless charging circuitry, the wireless charging coil including a third portion and a fourth portion formed at different layers of the FPCB; and an MST coil electrically connected with the MST circuitry, the MST coil including a fifth portion and a sixth portion at different layers of the FPCB.
Abstract:
Disclosed is an electronic device that includes a housing, a display, and a conductive line extending from a first end part to a second end part to include a plurality of turns that surround a space between a first surface and a second surface of the housing, and generating a magnetic field in the first direction or second direction or of a direction perpendicular to the first or second direction. As such, the electronic device may receive wireless power from a wireless charging device even if the electronic device is mounted on the wireless charging device in various directions.
Abstract:
An electronic device comprising: a memory; a communication unit for exchanging communications with a wearable device and an external device; and at least one processor that is operatively coupled to the memory, configured to: detect an event that is associated with a connection with the external device; identify a function that is associated with the external device in response to the event; and transmit to the wearable device an instruction for executing the function, wherein the instruction is transmitted via the communications unit.
Abstract:
An electronic device comprising: a memory; a communication unit for exchanging communications with a wearable device and an external device; and at least one processor that is operatively coupled to the memory, configured to: detect an event that is associated with a connection with the external device; identify a function that is associated with the external device in response to the event; and transmit to the wearable device an instruction for executing the function, wherein the instruction is transmitted via the communications unit.
Abstract:
According to various embodiments, an electronic device comprises a housing comprising: a front surface plate; a rear surface plate spaced apart from the front surface plate opposite thereto; and a side surface member surrounding a space between the front surface plate and the rear surface plate, wherein at least a portion of the side surface member comprises at least one conductive portion disposed between a first nonconductive portion and a second nonconductive portion; at least one wireless communication circuit electrically connected to the conductive portion; a conductive plate disposed in the space, and comprising a slot having a longitudinal direction perpendicular to the conductive portion; a conductor disposed on the conductive plate; and at least one conductive member dividing the slot into a plurality of portions.
Abstract:
An electronic device comprising: a memory; a communication unit for exchanging communications with a wearable device and an external device; and at least one processor that is operatively coupled to the memory, configured to: detect an event that is associated with a connection with the external device; identify a function that is associated with the external device in response to the event; and transmit to the wearable device an instruction for executing the function, wherein the instruction is transmitted via the communications unit.
Abstract:
An electronic device and a method for disassembling the electronic device are provided. The electronic device includes a housing including at least one of a first plate or a second plate, when the housing includes the first plate and the second plate, the second plate faces in an opposite direction to the first plate, a substrate disposed between the first and second plates in substantially parallel with the first and second plates, a first attachment layer disposed between the first plate and the substrate, and a second attachment layer disposed between the second plate and the substrate. When the first and second attachment layers are seen from above the first plate, the first and second attachment layers overlap with each other at least partially, and one of the first and second attachment layer includes at least one tear line extended at least partially across the one attachment layer.
Abstract:
An electronic device is provided. The electronic device includes a housing, at least one ultrasonic wave generator and at least one ultrasonic sensor operatively disposed on the housing, and a processor electrically connected to the at least one ultrasonic wave generator and the at least one ultrasonic sensor and configured to emit ultrasonic waves from at least one surface of the housing using the at least one ultrasonic wave generator, receive reflected waves reflected from at least one object through the at least one ultrasonic sensor, and determine a proximity between the electronic device and the object based on at least a difference between a first time, at which the ultrasonic waves are emitted, and a second time, at which the reflected waves are received.
Abstract:
An electronic device comprising: a memory; a communication unit for exchanging communications with a wearable device and an external device; and at least one processor that is operatively coupled to the memory, configured to: detect an event that is associated with a connection with the external device; identify a function that is associated with the external device in response to the event; and transmit to the wearable device an instruction for executing the function, wherein the instruction is transmitted via the communications unit.