Abstract:
Methods and apparatuses are provided in which a processor of a transceiver selects one of a real component of a complex signal and an imaginary component of the complex signal. The complex signal has IQ imbalance. An adaptive filter of the transceiver performs a real multiplication operation using an adaptive filter coefficient and the one of the real component and the imaginary component of the complex signal to generate a complex compensation signal. An adder of the transceiver sums the complex signal and the complex compensation signal to generate a compensated signal in which the IQ imbalance is corrected. The compensated signal is output for digital processing.
Abstract:
A communication system includes: an inter-device interface configured to receive received signal including communication content; a communication circuit, coupled to the inter-device interface, configured to: determine an in-phase signal-component and a quadrature signal-component based on the received signal, calculate an adjustment value including a first adjustment and a second adjustment based on the in-phase signal-component and the quadrature signal-component according to a maximum-likelihood mechanism, and adjust the received signal based on the adjustment value for reducing an in-phase/quadrature imbalance between the in-phase signal-component and the quadrature signal-component in processing the communication content.
Abstract:
Provided are an apparatus for injecting a liquid into a primo-node and a primo-vascular system tracing system including the apparatus. The apparatus includes a liquid injection tube to inject a liquid into a primo-node of an object, and a suction tube to hold the primo-node to inject the liquid injection tube into the primo-node. The liquid injection tube and the suction tube are formed as one body. The liquid injection tube is inserted into an inner side of the suction tube and an edge unit of the liquid injection tube protrudes to the outside from an inner side of a suction opening of the suction tube.
Abstract:
Methods and apparatuses are provided in which a processor of a transceiver selects one of a real component of a complex signal and an imaginary component of the complex signal. The complex signal has IQ imbalance. An adaptive filter of the transceiver performs a real multiplication operation using an adaptive filter coefficient and the one of the real component and the imaginary component of the complex signal to generate a complex compensation signal. An adder of the transceiver sums the complex signal and the complex compensation signal to generate a compensated signal in which the IQ imbalance is corrected. The compensated signal is output for digital processing.
Abstract:
An embedded memory device includes a retention voltage supply circuit outputting a retention voltage in response to a retention activation signal, and a plurality of array voltage supply circuits outputting corresponding array voltages to corresponding bit cells. The plurality of array voltage supply circuits respectively include an array switch providing the retention voltage as a corresponding array voltage in response to the retention activation signal, a power switch providing a power supply voltage as the corresponding array voltage in response to a power gate activation signal, and an auxiliary circuit compensating the corresponding array voltage during a write operation or a read operation.
Abstract:
A method and system for providing end-to-end multi-task denoising for joint signal distortion ratio (SDR) and perceptual evaluation of speech quality (PESQ) optimization is herein disclosed. According to one embodiment, an method includes receiving a noisy signal, generating a denoised output signal, determining a signal distortion ratio (SDR) loss function based on the denoised output signal, determining a perceptual evaluation of speech quality (PESQ) loss function based on the denoised output signal, and optimizing an overall loss function based on the PESQ loss function and the SDR loss function.
Abstract:
A triboelectric generator includes a first electrode and a second electrode spaced apart from each other, a first charging part on the first electrode, a second charging part on the second electrode, and a grounding unit. The first charging part and the second charging part may be configured to contact each other through a sliding motion. The grounding unit may be configured to intermittently connect a charge reservoir to the second charging part. The grounding unit may be configured to vary the electric potential of the second charging part so as to amplify current flowing between electrodes of the triboelectric generator.