Abstract:
The present disclosure relates to a communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT). The present disclosure may be applied to intelligent services based on 5G communication technology and IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A system and a method for routing a data packet to a user equipment (UE) in a long term evolution-wireless local area network (LTE-WLAN) aggregation are provided. The system includes an evolved node B (eNB) with a packet data convergence protocol (PDCP) adaptation layer that adds a header to the data packet.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Disclosed is a method of reporting beam measurement state information by a User Equipment (UE). The method may include: measuring beam state information by using a first reception chain and a second reception chain; controlling beam state information on the first reception chain to correspond to beam state information on the second reception chain; calculating state information on each beam based on the controlled beam state information on the first reception chain and beam state information on the second reception chain; and reporting state information on one or more beams.
Abstract:
A 5th-Generation (5G) or pre-5G communication system to support a higher data rate beyond a 4th-Generation (4G) communication system such as long term evolution (LTE) is provided. The method for operating resources by a device included in a first network among a plurality of networks in a wireless communication system where the plurality of networks overlap includes transmitting, to terminals included in the first network, at least one of a beacon signal and a request signal requesting resource allocation information related to adjacent devices respectively included in networks adjacent to the first network, receiving the resource allocation information related to the adjacent devices from the terminals, and reserving a resource to be used for communication based on the received resource allocation information related to the adjacent devices.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method and an apparatus for operating a base station and a terminal in a wireless communication system using an unlicensed band are provided. The base station can determine at least one channel in at least one unlicensed band using one of a single channel operation and a multi-channel operation, acquire the at least one channel according to a data transmission request, and transmit a channel preservation signal until a start point of a first subframe transmitted on the acquired at least one channel.
Abstract:
A method for controlling a cell state corresponding to whether to transmit a signal, on a subframe basis by an evolved Node B (eNB) in a wireless communication system is provided. The method includes determining a cell state of at least one subframe included in each of an N-th frame and an (N−1)-th frame, and at the start of the N-th frame, transmitting to a user equipment (UE), information about cell states of all subframes belonging to the N-th frame and information about cell states of all subframes belonging to the (N−1)-th frame.
Abstract:
A method and an apparatus for controlling a waiting time related to determination of a radio link failure in a wireless communication system are provided. The method includes receiving a message from a network, if a first timer for determination of the radio link failure is running and the message includes timer information related to the waiting time, starting a second timer related to the waiting time based on the timer information, and if the second timer expires before expiration of the first timer, determining a channel situation of a serving cell as a situation of the radio link failure.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method performed by a user equipment (UE) in a wireless communication system is provided. The method includes receiving, from a first base station, information associated with a deactivation of a cell group of a second base station, determining whether to deactivate the cell group of the second base station based on the information, and transmitting, to the first base station, a first message for the deactivation of the cell group of the second base station in case that the cell group of the second base station is determined to be deactivated.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). A terminal in a wireless communication system is provided. The terminal includes a transceiver; and at least one processor configured to: receive, from a base station, configuration information for a bandwidth part, and receive, from the base station, information for a resource configuration within the bandwidth part.
Abstract:
A method for managing scheduling performance of bearers by a base station in a wireless network is provided. The method includes determining a configured packet delay budget (PDB) of non-guaranteed bit rate (NGBR) bearers and a configured PDB of guaranteed bit rate (GBR) bearers; monitoring a PDB of the NGBR bearers and a PDB of the GBR bearers during data communication; determining an average of quality-of-service class identifier (QCI) divergence of the NGBR bearers and an average of QCI divergence of the GBR bearers, wherein the QCI divergence of a bearer is a percentage variation between a monitored PDB and a configured PDB of the bearer; and controlling resource allocation parameters for minimizing the average of QCI divergence of the NGBR bearers and the average of QCI divergence of the GBR bearers.
Abstract:
The disclosure relates to a fifth generation (5G) communication system or a sixth generation (6G) communication system for supporting higher data rates beyond a fourth generation (4G) communication system such as long-term evolution (LTE). A system and a method for optimizing radio link control (RLC) mechanism in data plane are provided.