Abstract:
A light source module, backlight assembly, and display device including the same are disclosed. In one aspect, the light source module includes a printed circuit board, a plurality of light sources arranged over the printed circuit board, and a plurality of optical lenses respectively arranged over the light sources. Each of the optical lenses has upper and lower surfaces opposing each other. The light source module further includes a plurality of reflection patterns respectively formed on the optical lenses. Each of the reflection patterns includes a first reflection pattern formed on the lower surface of the corresponding optical lens and a second reflection pattern formed on the upper surface of the corresponding optical lens.
Abstract:
A method for manufacturing a display device includes preparing a target panel including a first substrate and a second substrate disposed on one surface of the first substrate, the target panel including a sealing area between the first substrate and the second substrate, making sealing light be incident in the sealing area and receiving at least a part of the sealing light reflected from the sealing area, generating first data including at least one parameter of intensity, energy, current, and voltage, and determining whether sealing is defective by comparing the first data and prestored second data.
Abstract:
According to an exemplary embodiment, the present system and method provide a quantum dot sheet including: a color conversion film that includes quantum dots and a polymer layer in which the quantum dots are dispersed; a first barrier film that is provided one a planar surface of the color conversion film; and a phosphor pattern that has a portion located along an edge portion of the surface of the first barrier film. The phosphor pattern, which may be printed onto the quantum dot sheet, prevents deterioration of the color conversion performance of the quantum dot sheet that may occur due to oxidization.
Abstract:
A light source module, backlight assembly, and display device including the same are disclosed. In one aspect, the light source module includes a printed circuit board, a plurality of light sources arranged over the printed circuit board, and a plurality of optical lenses respectively arranged over the light sources. Each of the optical lenses has upper and lower surfaces opposing each other. The light source module further includes a plurality of reflection patterns respectively formed on the optical lenses. Each of the reflection patterns includes a first reflection pattern formed on the lower surface of the corresponding optical lens and a second reflection pattern formed on the upper surface of the corresponding optical lens.
Abstract:
A lens includes an upper flat surface having a first outer diameter, a bottom surface having a second outer diameter and a third inner diameter, an external curved surface which connects the upper flat surface and the bottom surface, and an inner curved surface which protrudes toward the upper flat surface from the bottom surface at the third inner diameter.
Abstract:
A display device includes: a first chassis including a bottom surface, and a side wall which extends from an edge of the bottom surface; a light guide plate in the first chassis; a first fixing member which overlaps the side wall of the first chassis and contacts an upper surface of the light guide plate; and a first fastening member which fastens the first fixing member to the side wall of the first chassis. The first chassis includes a groove which extends through the side wall of the first chassis, the light guide plate includes a first protrusion which protrudes from an edge of the light guide plate and extends into the groove, and the first fixing member contacts an upper surface of the first protrusion of the light guide plate.
Abstract:
A method of evaluating crystallinity includes irradiating light from below a polycrystalline silicon substrate, allowing the irradiated light to pass through the polycrystalline silicon substrate and a circular polarizing plate disposed above the polycrystalline silicon substrate, measuring an intensity of light having passed through the circular polarizing plate at a location vertically above the circular polarizing plate, notifying that there is an error in a crystallinity of the polycrystalline silicon substrate when the measured intensity of the light is out of an error margin of a predetermined criterion intensity of light.
Abstract:
A display device includes a pixel including a first electrode and a second electrode and having first capacitance formed between the first electrode and the second electrode; a power supply to provide the first electrode with a third power voltage including an alternating wave form and to provide the second electrode with a second power voltage; and a sensor to sense a touch current flowing between the first electrode and the second electrode in response to the touch driving signal.
Abstract:
A backlight unit includes a light source, a light guiding plate disposed on a side of the light source to guide light, a quantum dot bar disposed between the light source and the light guiding plate and spaced apart from the light source and the light guiding plate, the quantum dot bar for performing wavelength conversion of light, and a quantum dot bar receiving unit disposed on lower surfaces of the quantum dot bar and the light guiding plate, wherein the quantum dot bar is seated on the quantum dot bar receiving unit, and the light guiding plate is mounted on the quantum dot bar receiving unit, and wherein the quantum dot bar receiving unit and the light guiding plate are coupled to each other.
Abstract:
A light guide plate for a backlight. The light guide plate includes: a light source unit for generating light; a light guide plate proximate to the light source unit and including an upper surface and a lower surface; and a light emission pattern configured to diffuse a portion of the light directed toward an image display panel, and a first straight pattern configured to channel the light along a direction substantially parallel to a direction of propagation of the light generated by the light source unit, both the light emission pattern and the first straight pattern being disposed on one of the upper surface and the lower surface of the light guide plate, in which the first straight pattern has peaks and valleys formed in alternating and repeating manner in a direction substantially perpendicular to a direction of propagation of the light generated by the light source unit.