Abstract:
A method of fabricating a sputtering target includes preparing a first powder material including at least one of a tin oxide and a mesh-forming oxide; mixing the first powder material and a second powder material comprising carbon or a tin oxide to prepare a mixture; simultaneously performing a primary compression and primary sintering on the mixture in a reduction atmosphere; and simultaneously performing a secondary compression and secondary sintering on the mixture in the reduction atmosphere to prepare the sputtering target.
Abstract:
A sputtering apparatus including: a first target and a second target disposed to face each other; a magnetic field generating unit that is disposed on each rear surface of the first and second targets to generate a magnetic field; and a structure that is disposed between the first target and the second target and is formed of a doping material.
Abstract:
An organic light-emitting display apparatus for selectively realizing circular polarization according to external light conditions, including a substrate; an organic light-emitting device on the substrate; a sealing member on the organic light-emitting device; a phase retardation layer on a surface of the substrate, the organic light-emitting device, or the sealing member; and a linear polarization layer on another surface of the substrate, the organic light-emitting device, or the sealing member, wherein the linear polarization layer is located to be closer to a source of external light than the phase retardation layer, and wherein the linear polarization layer comprises a photochromic material.
Abstract:
An organic light emitting display apparatus includes a base substrate, a light emitting unit on the base substrate and including an organic light emitting element, a driving unit on the base substrate, a sealing substrate opposite from the base substrate, and a sealing unit between the base and sealing substrates and enclosing the light emitting unit, the sealing unit being at least partially on the driving unit.
Abstract:
Thin film encapsulation for a flat panel display device and a method of manufacturing the thin film encapsulation structure. The thin film encapsulation structure of the flat panel display device includes thin film layers covering a display unit formed on a substrate, wherein the thin film layers comprise a plurality of inorganic layers and a hexamethyldisiloxane (HMDSO) layer interposed between the inorganic layers. Accordingly, as multiple layers of the thin film encapsulation structure may be formed in a single chamber, the manufacturing process may be simplified, and also, as the HMDSO layer, which is flexible, absorbs stresses, a risk of cracks occurring may also be reduced.
Abstract:
An organic light-emitting display apparatus for selectively realizing circular polarization according to external light conditions, including a substrate; an organic light-emitting device on the substrate; a sealing member on the organic light-emitting device; a phase retardation layer on a surface of the substrate, the organic light-emitting device, or the sealing member; and a linear polarization layer on another surface of the substrate, the organic light-emitting device, or the sealing member, wherein the linear polarization layer is located to be closer to a source of external light than the phase retardation layer, and wherein the linear polarization layer comprises a photochromic material.
Abstract:
An organic light-emitting display apparatus for selectively realizing circular polarization according to external light conditions, including a substrate; an organic light-emitting device on the substrate; a sealing member on the organic light-emitting device; a phase retardation layer on a surface of the substrate, the organic light-emitting device, or the sealing member; and a linear polarization layer on another surface of the substrate, the organic light-emitting device, or the sealing member, wherein the linear polarization layer is located to be closer to a source of external light than the phase retardation layer, and wherein the linear polarization layer comprises a photochromic material.
Abstract:
An organic light-emitting display apparatus for selectively realizing circular polarization according to external light conditions, including a substrate; an organic light-emitting device on the substrate; a sealing member on the organic light-emitting device; a phase retardation layer on a surface of the substrate, the organic light-emitting device, or the sealing member; and a linear polarization layer on another surface of the substrate, the organic light-emitting device, or the sealing member, wherein the linear polarization layer is located to be closer to a source of external light than the phase retardation layer, and wherein the linear polarization layer comprises a photochromic material.
Abstract:
An organic light-emitting display device is disclosed. The organic light-emitting display device may include a substrate, an organic light-emitting portion provided on the substrate, a first inorganic film that seals and covers the organic light-emitting portion, and a second inorganic film provided on the first inorganic film and including a low temperature viscosity transition (LVT) inorganic material. A coefficient of thermal expansion (CTE) of the first inorganic film may be smaller than a CTE of the second inorganic film.
Abstract:
A method for manufacturing an organic light-emitting display apparatus including: forming an organic light-emitting device on a substrate, the organic light-emitting device including a first electrode, a second electrode, and an intermediate layer including at least an organic emission layer; and forming a thin film encapsulating layer on the organic light-emitting device, wherein the thin film encapsulating layer includes at least one inorganic film including a low temperature viscosity transition (LVT) inorganic material and an oxide, and the oxide includes zirconium-tungsten oxide or lithium-aluminum-silicon oxide.