Abstract:
A display panel includes: a first gate line extending in a first direction; a second gate line extending in the first direction and spaced apart from the first gate line in a second direction crossing the first direction; a first connection line extending in the second direction; and a second connection line extending in the second direction and spaced apart from the first connection line in the first direction, wherein a distal end of the first connection line overlaps the first gate line and is electrically connected to the first gate line, and wherein a distal end of the second connection line overlaps the second gate line and is electrically connected to the second gate line.
Abstract:
An organic light-emitting display apparatus includes a thin film transistor including an active layer, gate, source and drain electrodes, a first insulating layer disposed between the active layer and the gate electrode, and a second insulating layer disposed between the gate electrode and the source and drain electrodes; a pad electrode including a first pad layer disposed on the same layer as the source and drain electrodes and a second pad layer disposed on the first pad layer; a third insulating layer covering the source electrode and the drain electrode and an end portion of the pad electrode; a pixel electrode including a semi-transmissive metal layer and disposed in an opening formed in the third insulating layer; and a fourth insulating layer having an opening formed in a location corresponding to an opening formed in the third insulating layer and covering the end portion of the pixel electrode.
Abstract:
An organic light-emitting diode (OLED) display and a method of manufacturing an OLED display are disclosed. In one aspect, the method includes forming a data electrode layer and patterning the data electrode layer so as to form a source electrode, a drain electrode, and a pad electrode. The method can also include forming a first organic insulating layer over the source, drain and pad electrodes and forming a via hole corresponding to the source electrode or the drain electrode in the first organic insulating layer via a one tone mask. The method can further include forming an OLED including an anode electrically connected to the source electrode or the drain electrode, an organic emission layer, and a cathode, and etching a first portion of the first organic insulating layer formed over the pad electrode and a second portion of the organic emission layer formed over the pad electrode.
Abstract:
A thin film transistor includes: a substrate, a semiconductor layer disposed on the substrate, a first gate electrode and a second gate electrode disposed on the semiconductor layer, a gate insulating layer disposed between the semiconductor layer and the first and second gate electrodes and having a first through hole between the first and second gate electrodes and a capping layer covering the first gate electrode and contacting the semiconductor layer via the first through hole. The capping layer includes a conductive material.
Abstract:
An organic light-emitting display apparatus includes a thin film transistor including a first insulating layer between an active layer and a gate electrode, and a second insulating layer between the gate electrode and source/drain electrodes, a pad electrode including a first pad layer on a same layer as the source/drain electrodes and a second pad layer, a third insulating layer including an organic insulating material covering the source/drain electrodes and an end portion of the pad electrode, a pixel electrode including a semi-transmissive metal layer, in an opening in the third insulating layer, a cathode contact unit including a first, second, and third contact layers, a fourth insulating layer covering the end portion of the pad electrode, an organic emission layer on the pixel electrode, and an opposing electrode on the organic emission layer.
Abstract:
An organic light-emitting display apparatus including: a substrate; at least one thin-film transistor disposed on the substrate; at least one capacitor disposed on the substrate and including a first electrode and a second electrode; a pixel electrode connected to the at least one thin-film transistor; a counter electrode facing the pixel electrode and including a reflective material; an organic emission layer disposed between the pixel electrode and the counter electrode; a first optical characteristic adjusting layer disposed between the substrate and the pixel electrode and formed on a same layer as the second electrode of the at least one capacitor; and a second optical characteristic adjusting layer disposed between the first optical characteristic adjusting layer and the pixel electrode.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a thin film transistor including an active layer, a gate electrode, a source electrode, and a drain electrode, a first insulating layer arranged between the active layer and the gate electrode, and a second insulating layer arranged between the gate, source, and drain electrodes. The OLED display also includes a third insulating layer covering the source and drain electrodes, wherein an opening is defined in each of the second and third insulating layers and wherein the openings substantially overlap. The OLED display further includes a pixel electrode formed in the openings defined in the second and third insulating layers and including a semi-permeable metal layer.
Abstract:
Provided are an organic light-emitting display (OLED) and a method of manufacturing the same. According to an aspect of the present invention, there is provided an OLED comprising a substrate which comprises a display area and a non-display area adjacent to the display area, an organic light-emitting device which is located on the display area of the substrate and comprises a first electrode, an organic light-emitting layer and a second electrode stacked sequentially, a power supply plate which is located on the non-display area of the substrate, and an extension electrode which is located on the non-display area of the substrate and extends from the second electrode to be connected to the power supply plate, wherein at least one recess pattern is formed on the power supply plate, and the extension electrode covers the recess pattern.
Abstract:
An organic light-emitting display apparatus includes: a thin film transistor including an active layer, a gate electrode, a source electrode, a drain electrode, a first insulating layer, and a second insulating layer; a pad electrode comprising a first pad layer and a second pad layer on the first pad layer; a third insulating layer covering the source electrode and the drain electrode and an end portion of the pad electrode; a pixel electrode comprising a semi-transmissive electrically conductive layer at an opening in the third insulating layer; a protection layer between the pixel electrode and the first insulating layer; a fourth insulating layer having an opening at a location corresponding to the opening formed in the third insulating layer and covering the end portion of the pad electrode; an emission layer on the pixel electrode; and an opposing electrode on the emission layer.
Abstract:
The organic light emitting display device includes a substrate including a thin film transistor (TFT) formed thereon, the TFT including a first insulating layer disposed between an active layer and a gate electrode, and a second insulating layer disposed between the gate electrode and source and drain electrodes; a pad electrode including a first pad layer disposed on a same layer as that where the source and drain electrodes are formed, and a second pad layer on the first pad layer; a bonding assistant layer on the substrate; a third insulating layer on the bonding assistant layer and including a first opening; a pixel electrode disposed in the first opening and electrically coupled to one of the source and drain electrodes; and a fourth insulating layer on the pixel electrode to cover a peripheral end portion of the pixel electrode and defining a pixel through a second opening.