Abstract:
A display device includes a substrate, one line on the substrate, the one line extending from a peripheral region through a display region, pixels on the display region, the pixels being connected to the one line, an outer line on the peripheral region, the outer line being connected to the one line during a short circuit test process that detects a position of a short circuit defect, an electrostatic protection resistor on the peripheral region, the electrostatic protection resistor being connected to the outer line, a pad on the peripheral region, the pad being connected to the outer line through the electrostatic protection resistor, a short circuit test signal being applied to the pad during the short circuit test process, and a bypass line connecting a node between the pad and the electrostatic protection resistor to the outer line.
Abstract:
An organic light emitting display device, includes: pixels connected to scan lines, light emission lines, and data lines crossing the scan lines and the light emission lines, and including organic light emitting diodes, and pixel driving circuits to output a driving current to the organic light emitting diodes, respectively; a plurality of dummy driving circuits to output a dummy driving current; a dummy data line to apply a dummy data voltage to the plurality of dummy driving circuits; and a plurality of repair lines to electrically connect each of the organic light emitting diodes to at least one of the plurality of dummy driving circuits, wherein each of the dummy driving circuits corresponds to at least two of the repair lines, and each of the organic light emitting diodes is to be electrically connected to corresponding ones of the dummy driving circuits through corresponding ones of the repair lines.
Abstract:
An organic light emitting diode (OLED) display device includes a display panel having a display region and a peripheral region, an OLED at the display region and including an end connected to a first voltage, a pixel circuit at the display region, a repair pixel circuit at the peripheral region, a repair line for connecting the repair pixel circuit to the OLED, and a switching circuit configured to apply a second voltage to the repair line during a power-up of the OLED display device.
Abstract:
An organic light emitting display device includes a display area and a non-display area. The display area includes display pixels at crossing areas of data lines, scan lines, and emission control lines. The non-display area includes auxiliary pixels at crossing positions of auxiliary data lines, scan lines, and emission control lines. The display device also includes a scan driver to supply scan signals to the scan lines, a first data driver to supply data voltages to the data lines, a second data driver to supply an auxiliary data voltage to the auxiliary data line, and a demultiplexer between the data lines and the first data driver.
Abstract:
A display device and a method of manufacturing the display device. The display device includes: a first substrate including a display region at which pixels are located; a second substrate on the first substrate while covering the display region; a sealant between the first substrate and the second substrate and surrounding the display region; and at least one protruding pattern located at an outer side of the sealant with respect to a center of the first substrate or the second substrate, on at least one of the first substrate or the second substrate.
Abstract:
An organic light emitting display device including a display panel including a plurality of scan lines, first through (M)th data lines crossing the scan lines, and a plurality of pixels, where M is an integer greater than 1, a scan driver configured to provide scan signals to the pixels through the plurality of scan lines, a data driver configured to provide data signals to the pixels through the first through (M)th data lines, and a porch data generator configured to generate porch data based on an average value of at least a portion of frame data, and to provide the porch data to the data driver, wherein the data driver is configured to generate the data signals based on the porch data during a porch period, and to generate the data signals based on the frame data during an active period.
Abstract:
An organic light emitting display device and a method of manufacturing the same are provided. The organic light emitting display device includes: a substrate including a display portion displaying an image as a plurality of sub-pixels that are arranged, and a non-display portion extending at an edge of the display portion; and a sealant formed along a periphery of the display portion, wherein an organic film having an emissive layer is formed on the plurality of sub-pixels, and an emissive layer storage unit storing an emissive layer coated on the non-display portion is formed between the display portion and the sealant. By forming the emissive layer storage unit by removing at least a part of a pixel defining layer on an edge of the substrate, a raw material of the emissive layer coated on the non-display portion on the substrate is easily processed via the emissive layer storage unit.
Abstract:
A display device and a method of manufacturing the display device. The display device includes: a first substrate including a display region at which pixels are located; a second substrate on the first substrate while covering the display region; a sealant between the first substrate and the second substrate and surrounding the display region; and at least one protruding pattern located at an outer side of the sealant with respect to a center of the first substrate or the second substrate, on at least one of the first substrate or the second substrate.
Abstract:
An organic light emitting display device and a method of manufacturing the same are provided. The organic light emitting display device includes: a substrate including a display portion displaying an image as a plurality of sub-pixels that are arranged, and a non-display portion extending at an edge of the display portion; and a sealant formed along a periphery of the display portion, wherein an organic film having an emissive layer is formed on the plurality of sub-pixels, and an emissive layer storage unit storing an emissive layer coated on the non-display portion is formed between the display portion and the sealant. By forming the emissive layer storage unit by removing at least a part of a pixel defining layer on an edge of the substrate, a raw material of the emissive layer coated on the non-display portion on the substrate is easily processed via the emissive layer storage unit.
Abstract:
A display device and a method of driving the same in which moving image blurring is prevented and a contrast ratio is enhanced by providing a light-emitting element, switching transistors, and a driving transistor with driving signals that include specific voltages at predetermined times, so that the light-emitting element does not emit light for an entire frame and the light output is not influenced by a threshold voltage of the driving transistor.