Abstract:
A display panel driving apparatus includes a first switching element and a second switching element. The first switching element applies first pixel data to a first pixel connected with a first data line of a display panel during a first sub frame period. The first switching element is connected with a data channel of a data driving part. The second switching element applies second pixel data having a level higher than a level of the first pixel data to a second pixel connected with a second data line of the display panel during a second sub frame period. The second switching element is connected with the data channel. Thus, display quality of a display apparatus may be enhanced.
Abstract:
A display panel driving apparatus includes a first switching element and a second switching element. The first switching element applies first pixel data to a first pixel connected with a first data line of a display panel during a first sub frame period. The first switching element is connected with a data channel of a data driving part. The second switching element applies second pixel data having a level higher than a level of the first pixel data to a second pixel connected with a second data line of the display panel during a second sub frame period. The second switching element is connected with the data channel. Thus, display quality of a display apparatus may be enhanced.
Abstract:
A display apparatus includes: a display panel including a gate line, a storage line adjacent to the gate line, and a pixel, the pixel including a pixel transistor coupled to the gate line, a liquid crystal (“LC”) capacitor coupled to the pixel transistor, and a storage capacitor coupled to the LC capacitor; a first gate driver configured to provide a gate signal to the gate line; and a first level switch configured to provide a storage signal to the storage line, the storage signal being synchronized with the gate signal and having a phase opposite to a phase of the gate signal.
Abstract:
A display apparatus includes an image analyzer that analyzes image data and outputs an interrupt signal at a period during which the image data of a low frequency change to the image data of a high frequency, a frequency detector that detects the high frequency, a frame rate controller that outputs a vertical synch signal of the high frequency in response to the interrupt signal, a polarity compensation controller that determines a last frame of the low frequency based on an interrupt period at which the interrupt signal is generated, generates a reversed polarity signal with respect to a polarity signal of the last frame and outputs the reversed polarity signal during a polarity compensation period close to the interrupt period, and a data driver circuit that outputs a data signal based on the reversed polarity signal to a data line during the polarity compensation period.
Abstract:
A method of driving a display panel includes generating a first driving period having a first driving frequency, generating a second driving period having a second driving frequency, and inserting a compensating frame between the first driving period and the second driving period. A display apparatus includes a display panel configured to display an image, and a display panel driver configured to generate a first driving period having a first driving frequency, to generate a second driving period having a second driving frequency, and to insert a compensating frame between the first driving period and the second driving period.
Abstract:
An electroluminescent display and a method of driving the same are disclosed. In one aspect, the display includes a display panel including a plurality of pixels configured to operate based on a first power supply voltage having a negative voltage level. The display panel is configured to generate at least one feedback voltage corresponding to an ohmic drop of the first power supply voltage. An analog-to-digital converter is configured to generate at least one digital feedback signal based on the at least one feedback voltage. An adaptive voltage controller is configured to generate a voltage control signal based on input image data, the at least one digital feedback signal, a distribution of the input image data and the ohmic drop of the first power supply voltage. A voltage converter is configured to generate the first power supply voltage based on an input voltage and the voltage control signal.
Abstract:
A method of driving a display panel includes generating a first driving period having a first driving frequency, generating a second driving period having a second driving frequency, and inserting a compensating frame between the first driving period and the second driving period. A display apparatus includes a display panel configured to display an image, and a display panel driver configured to generate a first driving period having a first driving frequency, to generate a second driving period having a second driving frequency, and to insert a compensating frame between the first driving period and the second driving period.
Abstract:
A method of driving an electro-wetting display panel including a pixel part is provided. In the method, data voltages are applied to the electro-wetting display panel during a first time of a frame. The frame has the first time and a second time. The first time has a plurality of horizontal periods. The data voltages are generated based on reference gamma voltages. At least one of reference gamma voltages of one of the horizontal periods is different from another of the reference gamma voltages of another of the horizontal periods. A reset voltage is applied to the electro-wetting display panel during the second time of the frame.