Abstract:
A method of manufacturing an organic light emitting display device includes: providing a capacitor on a substrate; providing a protection layer on the capacitor; providing an organic light emitting diode on the protection layer; and providing an encapsulation layer which encapsulates the organic light emitting diode. The providing the capacitor includes: providing a bottom electrode including an oxide semiconductor, on the substrate; providing an insulation layer on the substrate and overlapping the bottom electrode; annealing the bottom electrode to increase a carrier density of the bottom electrode; and providing an intermediate electrode on the insulation layer and overlapping the bottom electrode.
Abstract:
A display device includes a substrate including a first area displaying an image and a second area adjacent to the first area, the second area transmitting external light, a first electrode and a second electrode disposed in the first area and overlapping each other, an emission layer disposed between the first electrode and the second electrode in the first area, a first semiconductor layer disposed in the first area, and a second semiconductor layer disposed in the second area.
Abstract:
A method of manufacturing an organic light emitting display device includes: providing a capacitor on a substrate; providing a protection layer on the capacitor; providing an organic light emitting diode on the protection layer; and providing an encapsulation layer which encapsulates the organic light emitting diode. The providing the capacitor includes: providing a bottom electrode including an oxide semiconductor, on the substrate; providing an insulation layer on the substrate and overlapping the bottom electrode; annealing the bottom electrode to increase a carrier density of the bottom electrode; and providing an intermediate electrode on the insulation layer and overlapping the bottom electrode.
Abstract:
A method of manufacturing an organic light emitting display device includes: providing a capacitor on a substrate; providing a protection layer on the capacitor; providing an organic light emitting diode on the protection layer; and providing an encapsulation layer which encapsulates the organic light emitting diode. The providing the capacitor includes: providing a bottom electrode including an oxide semiconductor, on the substrate; providing an insulation layer on the substrate and overlapping the bottom electrode; annealing the bottom electrode to increase a carrier density of the bottom electrode; and providing an intermediate electrode on the insulation layer and overlapping the bottom electrode.
Abstract:
An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.
Abstract:
A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
Abstract:
A display device according to an embodiment includes: a first conductive layer that is disposed on a substrate; a transistor that is disposed on the substrate; and a light emitting element that is electrically connected to the transistor, wherein the transistor includes a semiconductor layer that at least partially overlaps the first conductive layer and is disposed on the first conductive layer, and a gate electrode that is disposed on the semiconductor layer. The semiconductor layer includes a first region that does not overlap the first conductive layer, a third region that overlaps the first conductive layer, and a second region that is disposed between the first region and the third region and traverses an edge of the first conductive layer. The first width of the semiconductor layer in the first region is smaller than a second width of the semiconductor layer in the second region.
Abstract:
A display device may include a light emitting element, a buffer layer, a gate insulation layer, and a switching element. A refractive index of the gate insulation layer may be equal to a refractive index of the buffer layer. The switching element may be electrically connected to the light emitting element and may include an active layer and a gate electrode. The active layer may be positioned between the buffer layer and the gate insulation layer and may directly contact at least one of the buffer layer and the gate insulation layer. The gate insulation layer may be positioned between the active layer and the gate electrode and may directly contact at least one of the active layer and the gate electrode.
Abstract:
A display device may include a light emitting element, a buffer layer, a gate insulation layer, and a switching element. A refractive index of the gate insulation layer may be equal to a refractive index of the buffer layer. The switching element may be electrically connected to the light emitting element and may include an active layer and a gate electrode. The active layer may be positioned between the buffer layer and the gate insulation layer and may directly contact at least one of the buffer layer and the gate insulation layer. The gate insulation layer may be positioned between the active layer and the gate electrode and may directly contact at least one of the active layer and the gate electrode.
Abstract:
A transparent display device includes a base substrate having a pixel area and a transmission area, a barrier layer disposed on the base substrate, a pixel circuit disposed in the pixel area, a display structure disposed on the pixel circuit, a transmitting structure disposed in the transmission area, an adhesive layer disposed between the base substrate and the barrier layer, and between the base substrate and the transmitting structure, and a transmitting window defined in the transmission area where the transmitting structure may include a composition including silicon oxynitride, the adhesive layer may include aluminum oxide, and the transmitting window may expose a surface of the transmitting structure.