Abstract:
A display device comprises a signal processor configured to generate left-eye and right-eye image data according to an input image signal, a frame rate controller configured to generate a plurality of left-eye and right-eye image data from the left-eye and right-eye image data according to an output frequency, a data formatter configured to alternately organize the plurality of left-eye and right-eye image data generated by the frame rate controller, and a display unit configured to sequentially display the plurality of left-eye and right-eye image data organized by the data formatter.
Abstract:
An organic light emitting diode (OLED) display and a method of compensating for degradation are disclosed. One inventive aspect includes a panel assembly including a plurality of pixels. Luminance measuring units are formed along a perimeter of the panel assembly to measure luminance of light emitted from the pixels. A processing unit compares the measured luminance data so as to detect and also compensate for a degraded pixel.
Abstract:
A scan driver including a plurality of scan driving circuit units for outputting scan signals and a buffer unit for receiving a control signal input to a first scan driving circuit unit of the plurality of scan driving circuit units to output the received control signal to a second scan driving circuit unit of the plurality of scan driving circuit units.
Abstract:
A display device and a method of driving the same in which moving image blurring is prevented and a contrast ratio is enhanced by providing a light-emitting element, switching transistors, and a driving transistor with driving signals that include specific voltages at predetermined times, so that the light-emitting element does not emit light for an entire frame and the light output is not influenced by a threshold voltage of the driving transistor.
Abstract:
Exemplary embodiments of the present invention disclose a display device, and a method of driving the same. The display device includes a display unit including pixels included in one or more deterioration region groups and pixels included in one or more reference groups corresponding to the deterioration region groups, a sensing unit configured to sense a current flowing through an organic light emitting diode of each of the deterioration region groups and each of the reference groups and provide current information about the deterioration region group and current information about the reference group. Exemplary embodiments of the present invention also provide a compensation circuit configured to convert first data supplied from the outside into second data by using compensation data corresponding to a compensation prediction curve and output the second data, and compare the current information about the deterioration region group and the current information about the reference group and correct the compensation prediction curve for the deterioration region group; and a data driver configured to supply the second data to the display unit through data lines as data signals.
Abstract:
An organic light-emitting diode (OLED) display and a method of operating the same are disclosed. In one aspect, the display includes a plurality of pixels each including a pixel circuit and produces grayscale values by adjusting an emission duty based at least in part on image data. The method comprises calculating a voltage drop of a power supply voltage at each of the pixel circuits based at least in part on the image data and extracting a luminance decrement corresponding to the voltage drop for each pixel circuit based at least in part on a voltage-luminance characteristic of the pixels. The method also comprises increasing the emission duty for each pixel based at least in part on the luminance decrement, and driving the pixels based at least in part on the increased emission duty.
Abstract:
An organic light emitting display includes a display unit that includes pixels coupled to scan lines, control lines, and data lines; a control line driver for providing control signals to the respective pixels through the control lines; a first power driver for applying a first power to the pixels of the display unit; and a second power driver for applying a second power to the pixels of the display unit, wherein the first power and/or the second power is applied to the pixels of the display unit, having voltage values at different levels, during periods of one frame, and the control signals and the first and second powers are concurrently provided to all of the pixels.
Abstract:
Exemplary embodiments of the present invention relates to a pixel circuit for displaying an image of uniform luminance. The pixel circuit comprising an organic light emitting diode (OLED), an RS trigger comprising a first terminal connected to a scan line, a second terminal connected to an enable line, and a third terminal connected to a data line, the RS trigger configured to generate an output signal according to an enable signal, a data signal, and a scan signal respectively received via the enable line, the data line, and the scan line, and a driving transistor comprising a first electrode connected to a first power source, a second electrode connected to an anode of the OLED, and a gate electrode connected to an output terminal of the RS trigger, the driver transistor configured to control a current flowing through the OLED in response to the output signal of the RS trigger.
Abstract:
A display device includes a display panel including a plurality of pixels, a control unit configured to scale image data provided from the outside based on an image load factor and to output the scaled image data, and a data driver configured to supply data signals corresponding to the scaled image data to a plurality of data lines connected to the pixels, wherein the control unit includes a load factor calculating unit configured to calculate a load factor of the image data; and a data scaler configured to scale a gray level of the image data based on a scaling ratio corresponding to a load factor.
Abstract:
A display panel includes input power supply line coupled to a power supply at one or more edge portions of the display panel, and an output power supply line coupled to the input power supply line at a predetermined portion of the display panel. The input power supply line receives the power supply voltage, and the output power supply line receives the power supply voltage from the input power supply line. The power supply is coupled to the output power supply line at the one or more edge portions of the display panel, and receives the power supply voltage from the output power supply line to adjust a voltage level of the power supply voltage based on the power supply voltage from the output power supply line. The predetermined portion is at a location different from an edge of the display panel.