Abstract:
A display apparatus includes a display panel, a data driver, and a power voltage generator. The display panel includes a plurality of pixels and configured to display an image. The data driver is configured to apply a data voltage to the display panel. The power voltage generator is configured to provide a power voltage and an initialization voltage to the display panel. The power voltage generator is configured to receive a feedback initialization voltage from the display panel and configured to compensate the initialization voltage based on the feedback initialization voltage.
Abstract:
A display apparatus includes a display panel, a first driver and a second driver. The display panel includes a plurality of gate lines and a plurality of data lines. The display panel is configured to display an image based on input image data. The first driver is configured to output compensating gate signals having the same timing to the gate lines during a first period and scan gate signals having different timings to the gate lines during a second period. The second driver is configured to apply a compensating data voltage corresponding to a compensating grayscale value to the data lines during the first period and a target data voltage corresponding to a target grayscale value to the data lines during the second period.
Abstract:
A display panel driving apparatus includes an image pattern analyzing part, a clock signal generating part and a data driving part. The image pattern analyzing part is configured to analyze an image pattern of an image data. The clock signal generating part is configured to generating a clock signal having a different pulse width according to the image pattern of an image data. The data driving part is configured to drive a data line of a display panel in response to the clock signal. Thus, power consumption and heating of the data driving part may be decreased.
Abstract:
A display apparatus includes a display panel, a gate driving part, and a data driving part. The display panel is configured to display an image, and includes a gate line and a data line. The gate driving part is configured to output a gate signal to the gate line. The data driving part is configured to output a data signal to the data line. A transition time of the data signal is a time when the data signal transitions from a low level to a high level, and the transition time of the data signal increases according to a decrease of a load of the display panel.
Abstract:
A display device includes a display panel including data lines, gate lines, and pixels connected to the data lines and the gate lines, a data driver configured to drive the data lines, a plurality of gate drivers, each configured to drive a corresponding portion of the gate lines, and a plurality of feedback lines connected to one of the data lines at a plurality of measurement positions corresponding to the plurality of gate drivers. The data driver applies a test voltage to the data line, receives the test voltage as a plurality of feedback voltages through the plurality of feedback lines, and determines gate shift amounts at the plurality of measurement positions corresponding to the plurality of gate drivers based on the plurality of feedback voltages. The gate drivers apply gate signals to the gate lines that are shifted by the determined gate shift amounts.
Abstract:
A display apparatus includes a display panel, a gate driving part, and a data driving part. The display panel is configured to display an image, and includes a gate line and data lines. The gate driving part is configured to output a gate signal to the gate line. The data driving part includes a plurality of data driving integrated circuit parts. Each of the plurality of data driving integrated circuit parts includes channels, configured to output data signals to the data lines, and a dummy data channel. A sensing pin, configured to receive the gate signal, is formed in each dummy data channel.
Abstract:
A display device includes a first interconnection line, a first data driver, a second interconnection line, an electrostatic discharge (ESD) circuit, and a display panel. The first connection line transmits a data driving signal. The first data driver includes the first interconnection line and output a data signal based on the data driving signal. The second interconnection line passes through the first data driver and transmits a gate driving signal. The ESD) circuit in the first data driver and discharges static electricity transmitted through the second interconnection line. The first gate driver outputs a gate signal based on the gate driving signal transmitted through the second interconnection line. The display panel receives the data signal and the gate signal.
Abstract:
A display driving circuit includes a digital-to-analog converter configured to convert a digital image signal to an analog image signal, and a buffer circuit configured to receive the analog image signal and to output an output signal to be applied to a data line, where the buffer circuit includes an input stage configured to receive the analog image signal and to output a first signal, a first output stage configured to receive a first voltage and a second voltage and to output the output signal, a second output stage configured to receive a third voltage and a fourth voltage and to output the output signal, and a selection circuit configured to apply the first signal from the input stage to the first output stage or the second output stage in response to a mode signal.