Abstract:
A display device and a method of driving the same are disclosed. In one aspect, the display device includes a gamma generator configured to generate emission duty data having an emission duty period based on input image data, a panel load calculator configured to calculate a load of the display panel, and a target driving voltage determiner configured to determine a target driving voltage. The display device also includes an emission duty controller configured to adjust the emission duty period and determine a target global current, driver configured to drive the display panel, and a driving voltage generator configured to supply the driving voltage to the display panel, measure driving currents flowing into the display panel, and adjust the driving voltage to include the target driving voltage based on the difference between the sum of the measured driving currents and the target global current.
Abstract:
A spot compensating apparatus including a spot compensation data generator configured to generate spot compensation data based on a first precision unit in a first block area having a spot, and based on a second precision unit in a second block area not having the spot, the spot compensation data being for compensating the spot displayed on a display panel configured to display an image based on first image data, the second precision unit having less precision than the first precision unit, and a spot compensator configured to perform a spot compensation on the first image data using the spot compensation data to output second image data.
Abstract:
A method of driving an OLED display device includes receiving image data. A load value is determined for each sub-pixel. A first load value is set to a largest load value determined for each sub-pixel. A first correction factor is calculated that decreases as the first load value increases, when the first load value is greater than a first threshold. A second load value is calculated based on the image data and current contribution weights for the sub-pixels. A second correction factor is calculated that decreases as the second load value increases, when the second load value is greater than a second threshold. Either the first correction factor or the second correction factor is selected. The image data is converted into output image data based on the correction factor. An image corresponding to the output image data is displayed.
Abstract:
A display device and a method of driving the same are disclosed. In one aspect, the display device includes a gamma generator configured to generate emission duty data having an emission duty period based on input image data, a panel load calculator configured to calculate a load of the display panel, and a target driving voltage determiner configured to determine a target driving voltage. The display device also includes an emission duty controller configured to adjust the emission duty period and determine a target global current, driver configured to drive the display panel, and a driving voltage generator configured to supply the driving voltage to the display panel, measure driving currents flowing into the display panel, and adjust the driving voltage to include the target driving voltage based on the difference between the sum of the measured driving currents and the target global current.
Abstract:
A method of digital-driving an organic light emitting display device includes analyzing a light emission pattern of the input image data and converting a third grayscale of the input image data into a first converted grayscale and a second converted grayscale based on an analysis result of the light emission pattern of the input image data.
Abstract:
A display device according to example embodiments includes an image analyzer configured to calculate contrast and load of an image of a frame based on R, G, and B image data input corresponding to the frame, an image processor configured to control a peak control coefficient applied to W image data to adaptively control peak luminance based on the contrast and the load, and to respectively generate R′, G′, and B′ image data by subtracting a product of the W image data and the peak control coefficient from each of the R, G, and B image data, a display panel including a plurality of pixels, a data driver configured to generate a data signal based on the R′, G′, B, and W image data, and to provide the data signal to the display panel, and a scan driver configured to provide a scan signal to the display panel.
Abstract:
An organic light-emitting diode display and a method of driving the same are disclosed. In one aspect, the display includes a display panel and an image data converter configured to determine a grayscale gain based on a grayscale distribution of input image data and convert the input image data into output image data based on the grayscale gain. A display panel driver is configured to drive the display panel to display an image corresponding to the output image data, and a target current determiner is configured to determine a magnitude of a target current based on the input image data. The display also includes a power supply configured to provide a power source to the display panel and adjust the voltage level of the power source to correspond to the target current via a power line.
Abstract:
A display device and method of adjusting luminance of a logo region of an image displayed on the same are disclosed. In one aspect, the display device includes a display panel configured to display an image including a logo region and a display driving integrated circuit configured to detect a logo estimate region of the image and determine a logo surrounding region that surrounds the logo estimate region. The integrated circuit is further configured to analyze a histogram of the logo surrounding region so as to determine a background maximum luminance, determine a high-gray-scale maximum luminance of the logo estimate region based on the background maximum luminance and adjust a gamma curve of the logo estimate region.
Abstract:
A display apparatus includes a display panel having a first portion and a second portion, a gate driver configured to drive a first gate line group in the first portion of the display panel starting at a first scan start point and to drive a second gate line group in the second portion of the display panel starting at a second scan start point, the second scan start point being different from the first scan start point, a first data driver configured to output a first data voltage to a first data line group in the first portion and a second data driver configured to output a second data voltage to a second data line group in the second portion.