Abstract:
An apparatus for cleaning a substrate includes a suction unit generating a suction force, a suction head suctioning contamination particles remaining on the substrate that is transferred in a first direction by using the suction force, and a suction tube connected to the suction unit and the suction head so as to transfer the suction force into the suction head and providing the contamination particles suctioned by the suction head into the suction unit. The suction head may include: a plurality of suction regions arranged in a second direction crossing the first direction; and a plurality of shutters for opening and closing the suction regions. The suction regions corresponding to a width of the substrate in the second direction are opened by the shutters so as to suction the contamination particles.
Abstract:
A display device includes a lens with an adjustable refractive index. The display device includes a display panel including a plurality of pixels, a backlight unit positioned at a back side of the display panel to emit light of a first color and light of a second color to the display panel at different times, the first color and the second color being different from each other; and a lens unit positioned at a front side of the display panel to form at least one lens in a 3D mode. The lens unit includes a plurality of electrodes for adjusting a refractive index of the lens, and a signal applied to the electrodes when the backlight unit emits the light of the first color is different from a signal applied to the electrodes when the backlight unit emits the light of the second color.
Abstract:
Disclosed is a liquid crystal display, including: a first substrate and a second substrate, which face each other; a color filter disposed on the first substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizing plate disposed outside the first substrate; a first compensation film disposed outside the first polarizing plate; a second compensation film disposed outside the second substrate; and a second polarizing plate disposed outside the second compensation film, in which the second compensation film includes a biaxial film, and the first substrate and the second substrate include a poly-amide (PA) having an optical characteristic of a negative C-plate.
Abstract:
An optical film may include a polarizer configured to linearly polarize a first light to provide a linearly polarized light component. The optical film may further include a first semi-transmissive film overlapping the polarizer, configured to transmit the linearly polarized light component, and configured to reflect a first circularly polarized component of a second light. The first circularly polarized component of the second light may have a first wavelength. The optical film may further include a second semi-transmissive film overlapping the first semi-transmissive film, configured to transmit the linearly polarized light component, and configured to reflect a second circularly polarized component of the second light. The second circularly polarized component of the second light may have a second wavelength that is unequal to the first wavelength.
Abstract:
A display device includes a lens with an adjustable refractive index. The display device includes a display panel including a plurality of pixels, a backlight unit positioned at a back side of the display panel to emit light of a first color and light of a second color to the display panel at different times, the first color and the second color being different from each other; and a lens unit positioned at a front side of the display panel to form at least one lens in a 3D mode. The lens unit includes a plurality of electrodes for adjusting a refractive index of the lens, and a signal applied to the electrodes when the backlight unit emits the light of the first color is different from a signal applied to the electrodes when the backlight unit emits the light of the second color.
Abstract:
A polarizer includes a reflective polarizer main body and an Rth compensation layer. The reflective polarizer main body includes a repetitively laminated structure, the repetitively laminated structure including two layers of different refractive indices repetitively disposed on one another. The Rth phase compensation layer is disposed at one side of the reflective polarizer main body. The Rth phase compensation layer is configured to compensate for a phase difference in an Rth direction.