Abstract:
A display device, including a color conversion film, including a base film including a plurality of openings, the base film blocking light, and a color conversion layer in the openings, the color conversion layer including a pattern of different colors.
Abstract:
A display apparatus includes a display panel including a first subpixel having a first primary color, a second subpixel having a second primary color; and a transparent subpixel; a panel driver which sets grayscale data of the first subpixel, the second subpixel and the transparent subpixel; a light source part which provides light to the display panel, where the light source comprises a first light source and a second light source having colors different from each other; and a light source driver which turns on the first light source during a first subframe, turns on the second light source during a second subframe, and turns on the first light source during a third subframe, and a first frame comprises the first subframe, the second subframe and the third subframe.
Abstract:
A liquid crystal display panel includes unit pixels including a first unit pixel and a second unit pixel, each of the first unit pixel and the second unit pixel including a first white area and first to third color areas, gate lines which extend in a first direction, cross the unit pixels and include a first gate line and a second gate line, data lines which extend in a second direction, and pixel electrodes which are electrically connected to the data lines and include first to seventh pixel electrodes, where the first to third pixel electrodes overlap the first to third color areas of the first unit pixel, respectively, the fourth to sixth pixel electrodes overlap the first to third color areas of the second unit pixel, respectively, and the seventh pixel electrode overlaps the first white areas of the first and second unit pixels.
Abstract:
A display device includes a light source unit that emits a first light with a first wavelength, an optical filter that converts the first light to a second light, and an optical shutter that transmits or reflects the first light or the second light.
Abstract:
A display panel includes: a plurality of pixels; and a first phase shifting layer and a second phase shifting layer, which overlap the pixels, where the first phase shifting layer and at least a portion of the second phase shifting layer are alternately arranged with each other, and a phase difference between light having a predetermined wavelength transmitted through the first phase shifting layer and light having the predetermined wavelength transmitted through the second phase shifting layer is approximately 180 degrees.
Abstract:
A display device includes a light source unit that emits a first light with a first wavelength, an optical filter that converts the first light to a second light, and an optical shutter that transmits or reflects the first light or the second light.
Abstract:
A light emitting device according to an embodiment includes a first electrode, a hole transport region disposed on the first electrode, an emission layer disposed on the hole transport region, an electron transport region disposed on the emission layer, and a second electrode disposed on the electron transport region. The emission layer includes a fused polycyclic compound represented by Formula 1, which is defined in the specification.
Abstract:
An organic electroluminescence device of an embodiment includes a first electrode and a second electrode which face each other, and a plurality of organic layers disposed between the first electrode and the second electrode. At least one organic layer selected from the plurality of organic layers includes a fused polycyclic compound represented by Formula 1, and thus the organic electroluminescence device can exhibit improved luminous efficiency.
Abstract:
A method of manufacturing a quantum dot optical component is provided. By the method, a plurality of quantum dot lines are formed on a first substrate, an encapsulation member that encapsulates the quantum dot lines is formed on the first substrate, a second substrate is laminated on the encapsulation member, and the first and second substrates are cut into a plurality of quantum dot optical components each including at least one of the quantum dot lines.
Abstract:
A liquid crystal display includes a first substrate, a first pixel and a second pixel vertically or horizontally disposed on the first substrate, a second substrate facing the first substrate, a liquid crystal layer including a plurality of liquid crystal molecules and disposed between the first and second substrates, and a first control electrode disposed between the first and second pixel electrodes. The first pixel includes a first pixel electrode, and the second pixel includes a second pixel electrode. The first pixel electrode includes a first plurality of micro branch portions extending in a first direction, and the second pixel electrode includes a second plurality of micro branch portions extending in a second direction. The first direction is different from the second direction.