Abstract:
A display apparatus includes a substrate, a pixel layer arranged over the substrate and including a plurality of display elements, an encapsulation member sealing the pixel layer, and a refractive layer arranged on the encapsulation layer and including a first refractive layer and a second refractive layer. The first refractive layer includes openings that correspond to the plurality of display elements, and the second refractive layer includes high refractive particles. The second refractive layer includes a first layer and a second layer, the first layer includes the high refractive particles dispersed in a first concentration, and the second layer includes the high refractive particles dispersed in a second concentration different from the first concentration.
Abstract:
A flexible display device includes a flexible substrate, an adhesion layer disposed on a surface of the flexible substrate, and a plurality of pixel structures in respective pixels on the adhesion layer. Each of the pixel structures on the adhesion layer includes a light emitting diode including an inorganic light emitting layer, and a thin film transistor which is connected to the light emitting diode and switches a state of the light emitting diode.
Abstract:
A flexible display and a method of manufacturing the same are disclosed. In one aspect, the method includes forming a sacrificial metal layer over a support substrate, the sacrificial metal layer formed of a metal material, and forming a barrier layer over the sacrificial metal layer, the barrier layer formed of an organic material. The method also includes exposing the sacrificial metal layer to oxygen so as to form a sacrificial metal oxide layer, forming a display unit over the barrier layer, and separating the barrier layer from the support substrate.
Abstract:
An organic luminescence display device includes a substrate, a display unit on the substrate, a thin-film encapsulation layer sealing the display unit, and a stress-reducing layer on the thin-film encapsulation layer, wherein the stress-reducing layer includes an organic molecular film.
Abstract:
A flexible display and a method of manufacturing the same are disclosed. In one aspect, the method includes forming a sacrificial layer on a support substrate, wherein the sacrificial layer includes a plurality of patterns continuously formed thereon and a plurality of grooves formed between the patterns. The method also includes forming a display unit on the sacrificial layer, dissolving and removing the sacrificial layer with water and separating the display unit from the support substrate.
Abstract:
An organic luminescence display device includes a substrate, a display unit on the substrate, a thin-film encapsulation layer sealing the display unit, and a stress-reducing layer on the thin-film encapsulation layer, wherein the stress-reducing layer includes an organic molecular film.
Abstract:
An organic light-emitting diode (OLED) display and a method of manufacturing the same are disclosed. In one aspect, the OLED display includes an OLED formed over a substrate, the OLED including a first electrode, a second electrode formed over the first electrode and an intermediate layer interposed between the first and second electrodes. A pixel defining layer is formed over the substrate and adjacent to the OLED, and a protection layer is formed over the second electrode and configured to protect the OLED. A thin-film encapsulating layer is formed over the protection layer and sealing the OLED so as to protect the OLED from the environment, at least a part of the thin-film encapsulating layer contacting the pixel defining layer.
Abstract:
An organic light-emitting diode (OLED) display and a method of manufacturing the same are disclosed. In one aspect, the OLED display includes an OLED formed over a substrate, the OLED including a first electrode, a second electrode formed over the first electrode and an intermediate layer interposed between the first and second electrodes. A pixel defining layer is formed over the substrate and adjacent to the OLED, and a protection layer is formed over the second electrode and configured to protect the OLED. A thin-film encapsulating layer is formed over the protection layer and sealing the OLED so as to protect the OLED from the environment, at least a part of the thin-film encapsulating layer contacting the pixel defining layer.
Abstract:
An organic luminescence display device includes a substrate, a display unit on the substrate, a thin-film encapsulation layer sealing the display unit, and a stress-reducing layer on the thin-film encapsulation layer, wherein the stress-reducing layer includes an organic molecular film.
Abstract:
An electronic device includes a light emitting element. An encapsulation layer is disposed on the light emitting element. The encapsulation layer includes a polymer having a molecular anisotropy greater than or equal to about 1.4. A sensor layer is disposed on the encapsulation layer. The molecular anisotropy is a ratio of a first absorbance of an infrared spectrum in an infrared spectroscopy when first polarized light that is polarized in a first direction perpendicular to a second direction is incident to the polymer to a second absorbance of an infrared spectrum in an infrared spectroscopy when second polarized light that is polarized in the second direction is incident to the polymer.