Abstract:
An organic light emitting display device may include a substrate having a pixel region and a transparent region, a first capacitor disposed in the transparent region of the substrate, a semiconductor device disposed in the pixel region of the substrate, a second capacitor disposed on the semiconductor device, and an organic light emitting structure disposed on the second capacitor. The organic light emitting display device may have a sufficient capacitance for components including the semiconductor device and the organic light emitting structure without increasing an area of the pixel region while maintaining a transmittance of the organic light emitting display device.
Abstract:
A driving circuit includes: an input terminal; an output terminal; a first transistor having a source electrode coupled to the input terminal, a drain electrode coupled to the output terminal, and a gate electrode; a second transistor having a source electrode, a drain electrode, and a gate electrode respectively coupled to the source electrode, the drain electrode, and the gate electrode of the first transistor; a first capacitor having a first electrode coupled to the input terminal and a second electrode coupled to the output terminal; and a second capacitor coupled in parallel with the first capacitor and having a first electrode coupled to the first electrode of the first capacitor and a second electrode that is floated.
Abstract:
An organic light emitting diode display including a substrate, a scan line transferring a scan signal, a compensation control line transferring a compensation control signal, an operation control line applying an operation control signal, a data line and a driving voltage line transferring a data signal and a driving voltage, respectively, a switching thin film transistor (TFT) connected to the scan line and the data line, a compensation TFT and an initialization TFT connected to the compensation control line, an operation control TFT connected to the operation control line and the switching TFT, a driving TFT connected to the driving voltage line, an organic light emitting diode connected to a drain electrode of the driving TFT, and a hold capacitor connected between a source electrode of the operation control TFT and a gate electrode of the initialization TFT.
Abstract:
Provided is a display apparatus including a plurality of unit pixels, each including a plurality of sub-pixels; a first line branched in a first direction from a common line as many as the number of sub-pixels in each of the unit pixels so as to connect sub-pixels emitting light of the same color in neighboring unit pixels to each other; a second line extending in a second direction that crosses the first direction and connected to the sub-pixels; and a third line adjacent to the second line, extending in the second direction, and including a hole formed on a portion where the first line and the third line cross each other, and connected to the sub-pixels.
Abstract:
An organic light emitting display that can stably extract information from pixels. A driving method of the organic light emitting display includes: generating first digital values by sensing deterioration information of organic light emitting diodes respectively included in a plurality of pixels coupled to a data line during two or more continuous frame periods; storing the first digital values in a memory; generating second digital values by sensing threshold voltage and mobility information of driving transistors respectively included in the pixels during two or more continuous frame periods; storing the second digital values in the memory; converting input data into calibration data according to the information stored in the memory to display an image having a uniform brightness, irrespective of the deterioration information of the organic light emitting diodes and the threshold voltage and mobility information of the driving transistors; and supplying a data signal in accordance with the calibration data to the data line.
Abstract:
A thin film transistor includes a substrate, a gate electrode on the substrate, an active layer spaced from the gate electrode, a source electrode and a drain electrode spaced from the gate electrode and coupled to the active layer, a gate wiring at a same layer as the gate electrode and coupled to the gate electrode, and first conductive members electrically coupled to, and overlapping, the gate wiring.
Abstract:
Provided is an organic light emitting display including a pixel circuit unit prepared over a substrate and comprising a plurality of thin film transistors (TFTs), and an organic light emitting device or diode (OLED) electrically connected to the pixel circuit unit. The pixel circuit unit and the OLED are connected through a repair unit comprising a semiconductor material, in order to facilitate easy repair.