Abstract:
A thin film transistor and a display apparatus include: a substrate; a plurality of first conductive lines formed on the substrate, each including a main body and a curved portion connected to the main body; a plurality of second conductive lines crossing the curved portions of the first conductive lines; and a plurality of pixel electrodes formed adjacent to the first conductive lines. The plurality of pixel electrodes includes a first pixel electrode disposed toward a side of one first conductive line, and a second pixel electrode disposed toward the other side of the one first conductive line. The display apparatus also includes an intermediate layer connected to the pixel electrodes for displaying images and an opposite electrode formed thereon.
Abstract:
An organic light emitting diode display apparatus and a method and apparatus for easily inspecting the organic light emitting diode display apparatus to determine whether an electrical failure occurs. The organic light emitting diode display apparatus comprises a plurality of pixels each comprising a pixel electrode, an intermediate layer including an organic emission layer, and an opposite electrode; scan lines and data lines corresponding to the plurality of pixels; first power supply lines connected to the plurality of pixels and extending in a first direction; second power supply lines connected to the first power supply lines; and a control line unit for simultaneously supplying control signals to the plurality of pixels, the control line unit including a plurality of control lines extending in one direction and two common lines being respectively connected to both ends of each of the plurality of control lines.
Abstract:
A device for inspecting an organic light-emitting display apparatus includes a power supply unit, a power receiving unit, a wiring location sensing unit, and a control unit. The power supply unit applies an AC signal to each of wirings arranged in the organic light-emitting display apparatus. The power receiving unit senses an electrical signal from each of the wirings. The wiring location sensing unit senses a location of each of the wirings. The control unit determines whether each of the wirings has a defect based on the sensed electrical signal and information pertaining to each wiring type of the wirings.
Abstract:
An organic light emitting diode (OLED) display includes a substrate where a plurality of pixels are formed, a first pixel defining layer on the substrate, the first pixel defining layer dividing the plurality of pixels, a connection wire on the first pixel defining layer, the connection wire electrically connecting two adjacent pixels, and a second pixel defining layer on the first pixel defining layer, the second pixel defining layer covering the connection wire.
Abstract:
An organic light emitting display apparatus includes a pixel part including a pixel electrode, a light emitting layer and an opposite electrode, and a contact part in which the opposite electrode contacts a power line, wherein a first thickness of the opposite electrode in the pixel part is different from a second thickness of the opposite electrode in the contact part.
Abstract:
A thin film transistor and a display apparatus include: a substrate; a plurality of first conductive lines formed on the substrate, each including a main body and a curved portion connected to the main body; a plurality of second conductive lines crossing the curved portions of the first conductive lines; and a plurality of pixel electrodes formed adjacent to the first conductive lines. The plurality of pixel electrodes includes a first pixel electrode disposed toward a side of one first conductive line, and a second pixel electrode disposed toward the other side of the one first conductive line. The display apparatus also includes an intermediate layer connected to the pixel electrodes for displaying images and an opposite electrode formed thereon.
Abstract:
A method of inspecting a short circuit defect between first wires extending in a first direction and a second direction intersecting the first direction and second wires extending in the first or second direction, the method including inspecting a short circuit defect between the first and second wires by using a potential difference monitored only in the second wires.
Abstract:
An organic light emitting diode display apparatus and a method and apparatus for easily inspecting the organic light emitting diode display apparatus to determine whether an electrical failure occurs. The organic light emitting diode display apparatus comprises a plurality of pixels each comprising a pixel electrode, an intermediate layer including an organic emission layer, and an opposite electrode; scan lines and data lines corresponding to the plurality of pixels; first power supply lines connected to the plurality of pixels and extending in a first direction; second power supply lines connected to the first power supply lines; and a control line unit for simultaneously supplying control signals to the plurality of pixels, the control line unit including a plurality of control lines extending in one direction and two common lines being respectively connected to both ends of each of the plurality of control lines.
Abstract:
An organic light-emitting display device and a method of its manufacture are provided, whereby manufacturing processes are simplified and display quality may be enhanced. The display device includes: an active layer of a thin film transistor (TFT), on a substrate and including a semiconducting material; a lower electrode of a capacitor, on the substrate, doped with ion impurities, and including a semiconducting material; a first insulating layer on the substrate to cover the active layer and the lower electrode; a gate electrode of the TFT, on the first insulating layer; a pixel electrode on the first insulating layer; an upper electrode of the capacitor, on the first insulating layer; source and drain electrodes of the TFT, electrically connected to the active layer; an organic layer on the pixel electrode and including an organic emission layer; and a counter electrode facing the pixel electrode, the organic layer between the counter electrode and the pixel electrode.
Abstract:
An organic light emitting diode (OLED) display includes a light-emitting region including an organic emission layer and a non-light-emitting region neighboring the light-emitting region. The OLED display includes a first electrode positioned at the light-emitting region and including a plurality of division regions divided according to a virtual cutting line crossing the light-emitting region, an organic emission layer positioned on the first electrode, a second electrode positioned on the organic emission layer, a driving thin film transistor connected to the first electrode, and a plurality of input terminals positioned at the non-light-emitting region and respectively connecting between each of division regions and the driving thin film transistor.