Abstract:
In an amorphous silicon thin film transistor-liquid crystal display device and a method of manufacturing the same, gate patterns including a gate line and a gate electrode are formed on an insulation substrate having a display region and a driving circuit region on which a plurality of shift resistors are formed. A gate insulating film, active layer patterns and data patterns including source/drain electrodes are formed successively on the substrate. A passivation layer on the substrate has a first contact hole exposing a drain electrode of the display region and second and third contact holes respectively exposing a gate electrode and source/drain electrode of a first transistor of each of the shift resistors. Electrode patterns on the passivation layer include a first electrode connected to the drain electrode of the display region through the first contact hole and a second electrode connecting the gate electrode to the source/drain electrode of the first transistor through the second and third contact holes. The gate driving circuit including the shift resistors and the wirings are integrated on the insulating substrate without an additional process, thereby simplifying the manufacturing process.
Abstract:
A display device and a driving method therefor includes a plurality of unit pixels arranged in a matrix form, a plurality of gate lines extending in a row direction and connected to the unit pixels, respectively, pluralities of first and second data lines extending in a column direction and connected to the unit pixels, respectively, a plurality of charge control lines extending in the row direction and connected to the unit pixels, respectively, a plurality of gate connection lines connected to at least two adjacent gate lines, respectively, and a plurality of charge connection lines connected to at least two adjacent charge control lines, respectively.
Abstract:
An organic light-emitting display apparatus includes: a plurality of emitting pixels coupled to a plurality of scan lines extending in a row direction and a plurality of data lines extending in a column direction; a plurality of dummy pixels arranged in the row direction; a plurality of first repair lines extending in the column direction, that are coupled to the plurality of dummy pixels, and that are adapted to be coupled to the plurality of emitting pixels; a plurality of second repair lines extending in the column direction, and that are coupled to the plurality of dummy pixels; and a plurality of repair switching devices arranged in a matrix array and adapted to be coupled to the plurality of scan lines and the plurality of second repair lines and adapted to be coupled to the plurality of data lines.
Abstract:
A scan line driver is disclosed. In one aspect, the scan line driver includes a driving signal generation circuit, an output line driving circuit, and a carry transfer circuit. The driving signal generation circuit is configured to generate first and second driving signals based on a plurality of clock signals and a carry signal from a previous scan line driver. The output line driving circuit is configured to generate a scan line enable signal based on the first and second driving signals. The carry transfer circuit is configured to generate a carry signal based on the first and second driving signals.
Abstract:
An organic light-emitting display apparatus includes: a plurality of emitting pixels coupled to a plurality of scan lines extending in a row direction and a plurality of data lines extending in a column direction; a plurality of dummy pixels arranged in the row direction; a plurality of first repair lines extending in the column direction, that are coupled to the plurality of dummy pixels, and that are adapted to be coupled to the plurality of emitting pixels; a plurality of second repair lines extending in the column direction, and that are coupled to the plurality of dummy pixels; and a plurality of repair switching devices arranged in a matrix array and adapted to be coupled to the plurality of scan lines and the plurality of second repair lines and adapted to be coupled to the plurality of data lines.
Abstract:
A liquid crystal display includes a substrate, a plurality of gate lines formed on the substrate, a plurality of data lines intersecting the plurality of gate lines, a plurality of thin film transistors connected to the plurality of gate lines and the plurality of data lines, and a plurality of pixel electrodes connected to the plurality of thin film transistors and arranged in a matrix, wherein each of the pixel electrodes includes a first side parallel to each gate line and a second side being shorter than the first side, the second side being formed next to the first side, wherein the plurality of pixel electrodes that are adjacent to each other in a column direction are connected to different data lines from each other.
Abstract:
Provided is a liquid crystal display (LCD), the LCD includes: an insulating substrate; a first gate line and a second gate line which are formed on the insulating substrate and extend parallel to each other; a data line formed on the insulating substrate, insulated from the first and second gate lines, and crossing the first and second gate lines; a first subpixel electrode connected to the first gate line and the data line by a first switching device and includes a plurality of first fine protruding patterns at an edge thereof; and a second subpixel electrode connected to the second gate line and the data line by a second switching device and including a plurality of second fine protruding patterns at an edge thereof, wherein the first fine protruding patterns are separated from each other by a first gap, and the second fine protruding patterns are separated from each other by a second gap, wherein the sum of a width of the first gap and a width of each of the first fine protruding patterns is greater than the sum of a width of the second gap and a width of each of the second protruding patterns.
Abstract:
A charge sharing style wide viewing liquid crystal display to which fast driving pre-charging technology may be applied to is disclosed. A charge sharing style wide viewing liquid crystal display is provided such that charge sharing is carried out between a liquid crystal capacitor and a charge sharing capacitor that correspond to the nth gate line when the mth (m≧n+2) gate line is turned on.
Abstract:
An organic light-emitting display apparatus includes: a plurality of emitting pixels coupled to a plurality of scan lines extending in a row direction and a plurality of data lines extending in a column direction; a plurality of dummy pixels arranged in the row direction; a plurality of first repair lines extending in the column direction, that are coupled to the plurality of dummy pixels, and that are adapted to be coupled to the plurality of emitting pixels; a plurality of second repair lines extending in the column direction, and that are coupled to the plurality of dummy pixels; and a plurality of repair switching devices arranged in a matrix array and adapted to be coupled to the plurality of scan lines and the plurality of second repair lines and adapted to be coupled to the plurality of data lines.
Abstract:
A display apparatus including: a unit pixel including sub-pixels, each sub-pixel including an emission area including a light emitting element and a circuit area including a switching transistor to control the light emitting element; a scan line extending in a first direction and connected to the unit pixel; a branch line extending from the scan line in a second direction crossing the first direction, and connected to the each of the sub-pixels; and data lines extending in the second direction and respectively connected to the sub-pixels.