Abstract:
A backlight unit includes at least one light source configured to emit light and a light guide plate including a light incident surface and a light emitting emitting surface. The light from the light source is incident on the light incident surface and the incident light is emitted through the light emitting surface. A wavelength conversion unit is disposed between the light source and the light incident surface of the light guide plate. A lower cover is configured to cover at least part of a lower portion of a light incident surface of the wavelength conversion unit. An upper cover is configured to cover at least part of an upper portion of the light incident surface of the wavelength conversion unit.
Abstract:
A display device includes: a display panel including a flat area and a bended area which extends bent from the flat area; and a cover panel comprises a heat dissipation member. The heat dissipation member includes: a flat portion corresponding to the flat area of the display panel, a bent portion corresponding to the bended area of the display panel, a first opening in the flat portion, and a second opening in the bent portion.
Abstract:
Provided are quantum dot bar container and backlight unit. According to an aspect of the present invention, there is provided a quantum dot bar container comprising a support including a guide groove formed along a major axis thereof; a cover having a major axis, the cover being orientable to align its major axis substantially parallel to the major axis of the support, the cover including a fixing groove formed along the major axis of the cover so as to face the guide groove; and a fixing portion coupling an end of the support to an end of the cover. The cover and the support are positioned so as to form a window therebetween, when the cover is oriented so that its major axis is substantially parallel to the major axis of the support.
Abstract:
A backlight unit includes a light source, a light guiding plate disposed on a side of the light source to guide light, a quantum dot bar disposed between the light source and the light guiding plate and spaced apart from the light source and the light guiding plate, the quantum dot bar for performing wavelength conversion of light, and a quantum dot bar receiving unit disposed on lower surfaces of the quantum dot bar and the light guiding plate, wherein the quantum dot bar is seated on the quantum dot bar receiving unit, and the light guiding plate is mounted on the quantum dot bar receiving unit, and wherein the quantum dot bar receiving unit and the light guiding plate are coupled to each other.
Abstract:
Disclosed is a display device that can uniformly transmit light emitted from a light source to the entire display panel without using a light guide plate. The display device includes a display panel, a backlight assembly supplying light to the display panel, and a lower cover receiving the backlight assembly. The backlight assembly includes a light source, a circuit board mounted with the light source, and a reflection cover coupled to the circuit board to reflect light emitted from the light source and formed of a bendable plate type member.
Abstract:
A stretchable window includes: a first material extending in a first direction and a second material extending in a second direction that intersects the first direction. The first material and the second material are interwoven, the first material has a first modulus, and the second material has a second modulus. The first modulus has a value in a range of about 0.1 Mpa to about 500 Mpa and the second modulus has a value in a range of about 1 Gpa to about 50 Gpa.
Abstract:
A manufacturing method of a display device includes: stacking a release layer over a first substrate; forming a conductor pattern over the release layer; forming a sacrificial layer over the conductor pattern; forming a second substrate including a polymer layer over the sacrificial layer; forming an electronic element including a conductor over the second substrate; forming a pattern corresponding to the conductor pattern in the sacrificial layer; transferring the conductor pattern from the release layer to a surface of the second substrate; and removing the first substrate, the release layer, and the sacrificial layer.
Abstract:
Disclosed is a display device that can uniformly transmit light emitted from a light source to the entire display panel without using a light guide plate. The display device includes a display panel, a backlight assembly supplying light to the display panel, and a lower cover receiving the backlight assembly. The backlight assembly includes a light source, a circuit board mounted with the light source, and a reflection cover coupled to the circuit board to reflect light emitted from the light source and formed of a bendable plate type member.