Abstract:
An organic light emitting diode (OLED) display that is flexible is disclosed. According to one aspect it includes: a flexible substrate, a moisture permeation preventing layer formed on the flexible substrate, a barrier layer formed on the moisture permeation preventing layer, an OLED formed on the barrier layer, a thin film encapsulation layer covering the OLED, and a lower protection film attached beneath the flexible substrate.
Abstract:
A display apparatus includes: a substrate; a display unit disposed on the substrate; a barrier unit disposed between the substrate and the display unit; and a buffer unit disposed between the barrier unit and the display unit, wherein a sum of a thickness of the barrier unit and a thickness of the buffer unit is in the range from 0.9 μm to 3 μm.
Abstract:
A display apparatus includes: a substrate; a display unit disposed on the substrate; a barrier unit disposed between the substrate and the display unit; and a buffer unit disposed between the barrier unit and the display unit, wherein a sum of a thickness of the barrier unit and a thickness of the buffer unit is in the range from 0.9 μm to 3 μm.
Abstract:
A display apparatus includes: a substrate; a display unit disposed on the substrate; a barrier unit disposed between the substrate and the display unit; and a buffer unit disposed between the barrier unit and the display unit, wherein a sum of a thickness of the barrier unit and a thickness of the buffer unit is in the range from 0.9 μm to 3 μm.
Abstract:
An organic light-emitting display apparatus includes a substrate; a device/wiring layer formed on the substrate, including a plurality of thin film transistors (TFTs); an emitting layer formed on the device/wiring layer, including a lower electrode of a capacitor and a plurality of organic light-emitting diodes (OLEDs); an encapsulating layer formed to cover the emitting layer; and an upper electrode of the capacitor formed on the encapsulating layer.
Abstract:
A thin film transistor includes a gate electrode extending from a scan line of a display and having an edge, and a connection line connecting the edge of the gate electrode to the scan line.
Abstract:
An organic light emitting diode display includes a substrate; a first capacitor electrode provided over the substrate and including polysilicon; an insulating layer provided over the first capacitor electrode; and a second capacitor electrode provided over the insulating layer and including a first lower metal layer overlapping with the first capacitor electrode and a first upper metal layer. The first upper metal layer includes a doping opening configured to expose at least a portion of the first lower metal layer.
Abstract:
An organic light-emitting display apparatus includes a substrate; a device/wiring layer formed on the substrate, including a plurality of thin film transistors (TFTs); an emitting layer formed on the device/wiring layer, including a lower electrode of a capacitor and a plurality of organic light-emitting diodes (OLEDs); an encapsulating layer formed to cover the emitting layer; and an upper electrode of the capacitor formed on the encapsulating layer.
Abstract:
An organic light emitting diode (OLED) display that is flexible is disclosed. According to one aspect it includes: a flexible substrate, a moisture permeation preventing layer formed on the flexible substrate, a barrier layer formed on the moisture permeation preventing layer, an OLED formed on the barrier layer, a thin film encapsulation layer covering the OLED, and a lower protection film attached beneath the flexible substrate.