Abstract:
An electronic device including: an image sensor including plural sensors divided into groups; a multi-lens array including plural lenses configured to each form an image of a scene on a distinct group of the groups of pixel sensors; and a filter including plural color filter elements arranged in rows and columns. Each color filter element is associated with one of the lenses and the respective distinct group and configured to filter an image of the scene into one of plural color channels. A first group of pixel sensors can define a perspective of the scene for an image reconstruction, and the color filter elements in the row of the color filter element corresponding to the first group and the color filter elements in the column of the color filter element corresponding to the first group can filter the image of the scene into each of the plural color channels.
Abstract:
A birefringent device, which is configured to be mounted in an optical path of an optical system, has an effective area in a pupil plane. The birefringent device affects different polarization states differently and position-dependently. The birefringent device realizes a first pupil function assigned to a first polarization state and a second different pupil function assigned to a second polarization state. The pupil functions may be optimized to achieve various specific optical properties like extended depth of field.
Abstract:
A birefringent device, which is configured to be mounted in an optical path of an optical system, has an effective area in a pupil plane. The birefringent device affects different polarization states differently and position-dependently. The birefringent device realizes a first pupil function assigned to a first polarization state and a second different pupil function assigned to a second polarization state. The pupil functions may be optimized to achieve various specific optical properties like extended depth of field.
Abstract:
An imaging system includes an optical unit that captures, from a scene, first images indifferent wavelength ranges when the scene is illuminated with not-structured light and second images of different wavelength ranges when the scene is illuminated with structured light. Thereby an imaging lens unit with longitudinal chromatic aberration is arranged between the scene and an imaging sensor unit. A depth processing unit may generate depth information on the basis of the second images by using optical triangulation. A sharpness processing unit uses the depth information to generate an output image by combining the first images. The optical unit of the imaging, system may be implemented in an endoscope.