Abstract:
An electronic device and a power control method of an electronic device are provided. The electronic device may include: a communication circuit including a first circuit configured to perform first communication and a second circuit configured to perform second communication; a processor electrically connected to the communication circuit; and a memory electrically connected to the processor, wherein, the memory stores instructions that, when executed, cause the processor to perform operations comprising: controlling the first circuit to operate according to a first power control mode associated with the first communication, and controlling the second circuit to operate according to a second power control mode associated with the second communication when the first communication and the second communication are concurrently performed through the first circuit and the second circuit; identifying a first sleep period during which the first circuit operates in a sleep mode according to the first power control mode, and a second sleep period during which the second circuit operates in the sleep mode according to the second power control mode; and controlling the communication circuit to operate in a deep sleep mode in which the communication circuit operates with power that is less than or equal to a predetermined power in a period where the first sleep period and the second sleep period coincide.
Abstract:
A method for using legacy Wi-Fi and Wi-Fi Peer-to-Peer (P2P) simultaneously is provided. The method includes entering a device discovery process of Wi-Fi P2P, if use of a Wi-Fi P2P function is requested while using a legacy Wi-Fi function, acquiring a Group Owner (GO) right of Wi-Fi P2P in the device discovery process, performing a listen state over the same channel as a channel where the legacy Wi-Fi function is in use, through the acquisition of the GO right, and performing a search state over a social channel of Wi-Fi P2P, and repeating the listen state and the search state until the device discovery process is ended.
Abstract:
An electronic device according to one embodiment comprises: a housing; a wireless communication circuit located in the housing, and supporting a wireless protocol so as to wirelessly connect to one of a plurality of APs using the same first credential information at one time point; a processor located in the housing and electrically connected to the communication circuit; and a memory located in the housing and electrically connected to the processor. The electronic device receives, from a first AP, a list of first channels at least partially associated with at least one second AP having a coverage overlapping a coverage of the first AP and a list of second channels associated with at least one third AP that does not have a coverage overlapping the coverage of the first AP through the wireless communication circuit, wherein the first AP, the at least one second AP, and the at least one third AP use the identical first credential information.
Abstract:
An electronic device according to various embodiments of the present disclosure includes one or more antennas, one or more communication circuits electrically connected to at least one of the one or more antennas, a processor electrically connected to the one or more communication circuits or included in the one or more communication circuits, and a memory electrically connected to the processor. The memory can store instructions which, when executed, cause the processor to identify a status of a network connected to the electronic device, to determine a communication scheme corresponding to the network status among a plurality of communication schemes which provide a tethering service, to broadcast a signal which comprises information for identifying the electronic device, using the determined communication scheme, and, based on at least part of a signal received from an external electronic device, to establish a connection with the external electronic device for the tethering service.
Abstract:
A method and an apparatus for setting a data transmission and reception period are provided. The method includes determining an average margin threshold for data communication with a second terminal, determining a data rate for the data communication with the second terminal, setting an active period and an idle period based on a ratio of the average margin threshold to the data rate, and synchronizing the active period and the idle period with the second terminal.
Abstract:
A method for using legacy Wi-Fi and Wi-Fi Peer-to-Peer (P2P) simultaneously is provided. The method includes entering a device discovery process of Wi-Fi P2P, if use of a Wi-Fi P2P function is requested while using a legacy Wi-Fi function, acquiring a Group Owner (GO) right of Wi-Fi P2P in the device discovery process, performing a listen state over the same channel as a channel where the legacy Wi-Fi function is in use, through the acquisition of the GO right, and performing a search state over a social channel of Wi-Fi P2P, and repeating the listen state and the search state until the device discovery process is ended.
Abstract:
An apparatus and a method for reducing power consumption in a portable terminal that transmits digital broadcast data through an ad hoc network are provided. If a terminal receiving digital broadcast transmits the received digital broadcast to a neighboring terminal, a control unit enters a sleep mode after buffering received data for a predefined time.
Abstract:
An apparatus and a method for reducing power consumption in a portable terminal that transmits digital broadcast data through an ad hoc network are provided. If a terminal receiving digital broadcast transmits the received digital broadcast to a neighboring terminal, a control unit enters a sleep mode after buffering received data for a predefined time.
Abstract:
A method for using legacy Wi-Fi and Wi-Fi Peer-to-Peer (P2P) simultaneously is provided. The method includes entering a device discovery process of Wi-Fi P2P, if use of a Wi-Fi P2P function is requested while using a legacy Wi-Fi function, acquiring a Group Owner (GO) right of Wi-Fi P2P in the device discovery process, performing a listen state over the same channel as a channel where the legacy Wi-Fi function is in use, through the acquisition of the GO right, and performing a search state over a social channel of Wi-Fi P2P, and repeating the listen state and the search state until the device discovery process is ended.