Abstract:
A vehicle energy absorbing system for a high-speed, small-overlap impact, comprising: lobes (12) spaced intermittently along a vehicle rail (1), wherein the lobes (12) include an impact arm (14), a reactionary arm (16), and a base (22), wherein a shape of the base (22) is complimentary to a shape of the vehicle rail (1) and wherein the impact arm (14) and the reactionary arm (16) protrude outwardly from the base (22) and the vehicle rail (1), wherein a channel (20) is formed in the space between the base (22), the impact arm (14), and the reactionary arm (16), wherein the channel (20) extends through the lobe (12) from end to end.
Abstract:
In one embodiment, an energy absorber comprises: a plurality of crush lobes, wherein the base, sides and outer wall comprise a first thermoplastic material; and a composite insert in the energy absorber, wherein the insert comprises a second plastic material and reinforcement, and wherein the composite insert is a separate element that is disposed in located at an area of the crush lobes, wherein the area is the side and/or the outer wall, and wherein the area has an area height and an area width. In an embodiment, a corner energy absorber can comprise: a plurality of layers with a plurality of ribs connecting the layers, wherein the layers and ribs comprise a first thermoplastic material; a composite insert comprising a second plastic material and reinforcement, and wherein the composite insert is a separate element that is disposed in the layers, the ribs, or both.
Abstract:
A vehicle energy absorbing system for a high-speed, small-overlap impact, comprising: lobes (12) spaced intermittently along a vehicle rail (1), wherein the lobes (12) include an impact arm (14), a reactionary arm (16), and a base (22), wherein a shape of the base (22) is complimentary to a shape of the vehicle rail (1) and wherein the impact arm (14) and the reactionary arm (16) protrude outwardly from the base (22) and the vehicle rail (1), wherein a channel (20) is formed in the space between the base (22), the impact arm (14), and the reactionary arm (16), wherein the channel (20) extends through the lobe (12) from end to end.
Abstract:
An energy absorber for a vehicle, comprising: a continuous beam to extend across a width of vehicle, the beam defining a plurality of inward facing cavities in a center section, with adjacent inward facing cavities separated from one another by an inward facing rib, and at each end portion a plurality of outward facing cavities, with adjacent outward facing cavities separated from one another by an outward facing rib, wherein the center section includes a panel that is continuous on its outward side, and that forms a relative bottom of each of the plurality of inward facing cavities with its inward face.
Abstract:
In one embodiment, an energy absorber comprises: a plurality of crush lobes, wherein the base, sides and outer wall comprise a first thermoplastic material; and a composite insert in the energy absorber, wherein the insert comprises a second plastic material and reinforcement, and wherein the composite insert is a separate element that is disposed in located at an area of the crush lobes, wherein the area is the side and/or the outer wall, and wherein the area has an area height and an area width. In an embodiment, a corner energy absorber can comprise: a plurality of layers with a plurality of ribs connecting the layers, wherein the layers and ribs comprise a first thermoplastic material; a composite insert comprising a second plastic material and reinforcement, and wherein the composite insert is a separate element that is disposed in the layers, the ribs, or both.
Abstract:
The invention relates to a hybrid structure comprising a first component having a base and an upstanding wall extending from the base, the first component having an interior enclosed between the upstanding wall and the base, and a thermoplastic second component moulded to the first component, the second component comprising a reinforcing portion for structurally reinforcing the first component, the reinforcing portion extending in a longitudinal direction of the first component and located in the interior of the first component, the thermoplastic second component further comprising a locking portion that extends adjacently over at least part of an exterior of the first component, wherein the reinforcing portion and the locking portion are integrally formed, thus interlocking the first component in the thermoplastic second component. The invention relates as well to a method for manufacturing such a hybrid structure, and to a vehicle comprising such a hybrid structure.
Abstract:
A hybrid seating structure, comprising: a main structure formed from a thermoplastic material and injection molded as a single piece, comprising: a frame formed by a left channel, right channel, bottom channel, and top channel; wherein each channel is defined by an outside wall, an inside wall, and a connecting wall that extends between the outside wall and the inside wall, wherein the inside walls of each channel form an inner side of the frame, and the outside walls and connecting walls form an exterior side of the frame; and each channel comprises a first reinforcing rib structure disposed in the channel; wherein the outside wall of the left channel comprises a first reinforcement; and wherein the outside wall of the right channel comprises a second reinforcement.
Abstract:
Abstract: An apparatus for providing structural support for a vehicle, the apparatus comprising a rocker panel component defining a channel extending along an axis, a partition disposed in the channel to define a first channel portion and a second channel portion, a first plastic reinforcement disposed in the first channel portion and coupled to the rocker panel component, the first plastic reinforcement defining a plurality of voids such that the first plastic reinforcement plastically deforms under a load at a first rate of deformation along the axis, a second plastic reinforcement disposed in the second channel portion and coupled to the rocker panel component, the second plastic reinforcement defining a plurality of voids such that the second plastic reinforcement plastically deforms under the load at a second rate of deformation along the axis, wherein the first rate of deformation is different than the second rate of deformation.
Abstract:
The invention relates to a hybrid structure comprising a first component having a base and an upstanding wall extending from the base, the first component having an interior enclosed between the upstanding wall and the base, and a thermoplastic second component moulded to the first component, the second component comprising a reinforcing portion for structurally reinforcing the first component, the reinforcing portion extending in a longitudinal direction of the first component and located in the interior of the first component, the thermoplastic second component further comprising a locking portion that extends adjacently over at least part of an exterior of the first component, wherein the reinforcing portion and the locking portion are integrally formed, thus interlocking the first component in the thermoplastic second component. The invention relates as well to a method for manufacturing such a hybrid structure, and to a vehicle comprising such a hybrid structure.