Abstract:
An apparatus and method for device security, wherein a fingerprint image is acquired on a touchscreen, and an authentication process is performed based on the first fingerprint image. Thereafter, a second fingerprint image is acquired and a difference between a characteristic of the first and second fingerprint images is determined, and based upon whether this difference is greater than a threshold, a second authentication process is performed.
Abstract:
Apparatuses and methods of a gradual power wake-up mechanism are disclosed. In one embodiment, a method of activating a device based on detection of a fingerprint image may include monitoring a first metric level of a first set of regions of the fingerprint image, determining a second metric level of a second set of regions of the fingerprint image in response to the first metric level exceeding a first threshold, and activating the device based on the second metric level of the second set of regions of the fingerprint image.
Abstract:
Systems, methods and apparatus for configuring a fingerprint sensor to operate in a capacitive sensing mode and an ultrasonic sensing mode are disclosed. A fingerprint sensor may be configured to operate in a capacitive sensing mode by driving a sensing electrode using a controller. In some implementations, an object positioned on or near the sensing electrode may be detected using the fingerprint sensor in the capacitive sensing mode, and the controller can drive electrodes of the fingerprint sensor differently to configure the fingerprint sensor to operate in an ultrasonic sensing mode. In some implementations, an applications processor may be instructed to authenticate a fingerprint of the object from image data obtained when the fingerprint sensor is operating in the ultrasonic sensing mode. In some implementations, a display of a mobile device containing the fingerprint sensor may be unlocked, or the mobile device may be woken up when the fingerprint is authenticated.
Abstract:
A mobile communication device equipped for proximity detection may include a transmitter that emits a periodic ultrasound signal, a receiver that detects the periodic ultrasound signal, an intra-frame filter that filters the detected periodic ultrasound signal based on a frame length of the detected periodic ultrasound signal, and a detector that determines a power level of the filtered periodic ultrasound signal to detect if the receiver is located in an undesirable location.
Abstract:
A system for small space positioning comprises a transmitting element at a fixed and known location, which transmitting a modulated continuous wave, for example an ultrasonic wave, having a continuous carrier signal part and a base-band signal modulated thereon. The transmitting element transmits the modulated continuous wave over a range in which an object to be positioned may appear. A receiving element receives signals transmitted by the transmitting device and reflected by the object, and a position detection element determines a position of the object from analysis of both the carrier signal part and the base-band signal received from the reflected signal.
Abstract:
An apparatus and method for device security, wherein a fingerprint image is acquired on a touchscreen, and an authentication process is performed based on the first fingerprint image. Thereafter, a second fingerprint image is acquired and a difference between a characteristic of the first and second fingerprint images is determined, and based upon whether this difference is greater than a threshold, a second authentication process is performed.
Abstract:
Systems, methods and apparatus for configuring a fingerprint sensor to operate in a capacitive sensing mode and an ultrasonic sensing mode are disclosed. A fingerprint sensor may be configured to operate in a capacitive sensing mode by driving a sensing electrode using a controller. In some implementations, an object positioned on or near the sensing electrode may be detected using the fingerprint sensor in the capacitive sensing mode, and the controller can drive electrodes of the fingerprint sensor differently to configure the fingerprint sensor to operate in an ultrasonic sensing mode. In some implementations, an applications processor may be instructed to authenticate a fingerprint of the object from image data obtained when the fingerprint sensor is operating in the ultrasonic sensing mode. In some implementations, a display of a mobile device containing the fingerprint sensor may be unlocked, or the mobile device may be woken up when the fingerprint is authenticated.
Abstract:
Methods and apparatuses for detecting touch motion with ultrasonic sensors are disclosed. In one embodiment, a method of detecting a touch motion with an ultrasonic sensor in an imaging apparatus may include sensing a series of scanned ultrasonic images of the touch motion, removing common components in the series of scanned ultrasonic images, determining correlations among the series of scanned ultrasonic images, and determining the touch motion based on the correlations among the series of scanned ultrasonic images.
Abstract:
Apparatuses and methods of a gradual power wake-up mechanism are disclosed. In one embodiment, a method of activating a device based on detection of a fingerprint image may include monitoring a first metric level of a first set of regions of the fingerprint image, determining a second metric level of a second set of regions of the fingerprint image in response to the first metric level exceeding a first threshold, and activating the device based on the second metric level of the second set of regions of the fingerprint image.
Abstract:
Embodiments of correcting diffraction effects in an ultrasonic sensor are disclosed. In one embodiment, an ultrasonic sensor may include an ultrasonic transmitter configured to transmit an ultrasonic wave, a piezoelectric receiver layer configured to receive a reflected wave of the ultrasonic wave, where the reflected wave comprises a plurality of images of a fingerprint having a plurality of phases in a time sequence, and a platen layer configured to protect the ultrasonic transmitter and the piezoelectric receiver layer. The ultrasonic sensor may further include an ultrasonic sensor array and a processor configured to sum the plurality of images multiplied by a complex phase exponential to form an integrated complex image, align the integrated complex image to a pre-selected phase to form an aligned complex image, determine a maximum energy phase using the aligned complex image, and compute a maximum energy image to represent the fingerprint based at least in part on the aligned complex image at the maximum energy phase.