Abstract:
Systems, methods and apparatus for configuring a fingerprint sensor to operate in a capacitive sensing mode and an ultrasonic sensing mode are disclosed. A fingerprint sensor may be configured to operate in a capacitive sensing mode by driving a sensing electrode using a controller. In some implementations, an object positioned on or near the sensing electrode may be detected using the fingerprint sensor in the capacitive sensing mode, and the controller can drive electrodes of the fingerprint sensor differently to configure the fingerprint sensor to operate in an ultrasonic sensing mode. In some implementations, an applications processor may be instructed to authenticate a fingerprint of the object from image data obtained when the fingerprint sensor is operating in the ultrasonic sensing mode. In some implementations, a display of a mobile device containing the fingerprint sensor may be unlocked, or the mobile device may be woken up when the fingerprint is authenticated.
Abstract:
Techniques for testing ultrasonic fingerprint sensors include operating a fingerprint impress simulator that may cyclically press a contact pad of the simulator against a platen of an ultrasonic sensor under test. A control electronics arrangement may operate the ultrasonic sensor under test and the fingerprint impress simulator, and may receive ultrasonic image data from the ultrasonic sensor under test. The ultrasonic sensor may include an ultrasonic transmitter and an ultrasonic sensor array disposed between the ultrasonic transmitter and the platen. The control electronics arrangement may cause the ultrasonic transmitter to emit an ultrasonic pulse, and may receive ultrasonic image data from the ultrasonic sensor array, the ultrasonic image data being converted from a detected portion of the ultrasonic pulse.
Abstract:
Systems, methods and apparatus for configuring a fingerprint sensor to operate in a capacitive sensing mode and an ultrasonic sensing mode are disclosed. A fingerprint sensor may be configured to operate in a capacitive sensing mode by driving a sensing electrode using a controller. In some implementations, an object positioned on or near the sensing electrode may be detected using the fingerprint sensor in the capacitive sensing mode, and the controller can drive electrodes of the fingerprint sensor differently to configure the fingerprint sensor to operate in an ultrasonic sensing mode. In some implementations, an applications processor may be instructed to authenticate a fingerprint of the object from image data obtained when the fingerprint sensor is operating in the ultrasonic sensing mode. In some implementations, a display of a mobile device containing the fingerprint sensor may be unlocked, or the mobile device may be woken up when the fingerprint is authenticated.
Abstract:
Systems, methods and apparatus for configuring a fingerprint sensor to operate in a capacitive sensing mode and an ultrasonic sensing mode are disclosed. A fingerprint sensor may be configured to operate in a capacitive sensing mode by driving a sensing electrode using a controller. In some implementations, an object positioned on or near the sensing electrode may be detected using the fingerprint sensor in the capacitive sensing mode, and the controller can drive electrodes of the fingerprint sensor differently to configure the fingerprint sensor to operate in an ultrasonic sensing mode. In some implementations, an applications processor may be instructed to authenticate a fingerprint of the object from image data obtained when the fingerprint sensor is operating in the ultrasonic sensing mode. In some implementations, a display of a mobile device containing the fingerprint sensor may be unlocked, or the mobile device may be woken up when the fingerprint is authenticated.
Abstract:
Systems, methods and apparatus for configuring a fingerprint sensor to operate in a capacitive sensing mode and an ultrasonic sensing mode are disclosed. A fingerprint sensor may be configured to operate in a capacitive sensing mode by driving a sensing electrode using a controller. In some implementations, an object positioned on or near the sensing electrode may be detected using the fingerprint sensor in the capacitive sensing mode, and the controller can drive electrodes of the fingerprint sensor differently to configure the fingerprint sensor to operate in an ultrasonic sensing mode. In some implementations, an applications processor may be instructed to authenticate a fingerprint of the object from image data obtained when the fingerprint sensor is operating in the ultrasonic sensing mode. In some implementations, a display of a mobile device containing the fingerprint sensor may be unlocked, or the mobile device may be woken up when the fingerprint is authenticated.
Abstract:
Techniques for testing ultrasonic fingerprint sensors include operating a fingerprint impress simulator that may cyclically press a contact pad of the simulator against a platen of an ultrasonic sensor under test. A control electronics arrangement may operate the ultrasonic sensor under test and the fingerprint impress simulator, and may receive ultrasonic image data from the ultrasonic sensor under test. The ultrasonic sensor may include an ultrasonic transmitter and an ultrasonic sensor array disposed between the ultrasonic transmitter and the platen. The control electronics arrangement may cause the ultrasonic transmitter to emit an ultrasonic pulse, and may receive ultrasonic image data from the ultrasonic sensor array, the ultrasonic image data being converted from a detected portion of the ultrasonic pulse.