Abstract:
Disclosed are systems, methods, and computer program products for decoding of transport format combination indicator (TFCI) in a universal mobile telecommunications system (UMTS). In one aspect, a method includes receiving by a UE coded TFCI bit sequence on a physical channel, determining a range of TFCI bits that contain information, performing early decoding of the received TFCI bit sequence; and limiting the search set of decoded TFCI bits to the determined range of TFCI bits. The range of TFCI bits that contain information may be determined from a code book.
Abstract:
A gain factor is used for calculating one transmit power relative to another transmit power. For example, in UMTS high speed uplink packet access, a gain factor called βed is employed for transmission associated a given enhanced transport format combination indicator (E-TFCI). Conventionally, a gain factor to be used for a given E-TFCI can be determined via interpolation between two of the reference E-TFCIs to reduce signaling overhead. However, certain network configurations may result in one or more of the reference E-TFCIs that could be otherwise be used according to conventional techniques being outside of a valid range. In the event such a sub-optimal configuration occurs, interpolation and/or extrapolation schemes based on at least one reference E-TFCIs that is within and/or or is not within the valid range are used to calculate a gain factor for a given E-TFCI.
Abstract:
Techniques for prioritizing non-scheduled data are described. Non-scheduled data to be transmitted on a non-scheduled MAC-d flow having a non-scheduled priority and scheduled data to be transmitted on a scheduled MAC-d flow having a scheduled priority may be identified by a user equipment (UE). The UE may transmit the non-scheduled MAC-d flow and the scheduled MAC-d flow according to a priority condition. In one aspect, the UE may receive a pre-allocation of power associated with a non-empty non-scheduled MAC-d flow. Based on a priority condition that the non-scheduled priority is a highest priority, the UE may apply all of the pre-allocation of power when transmitting the non-scheduled MAC-d flow. In one aspect, based on a priority condition that the non-scheduled priority is a lower priority, the UE may adjust the non-scheduled priority and/or the scheduled priority so that the non-scheduled priority is a higher priority.
Abstract:
Disclosed are systems, methods, and computer program products for decoding of transport format combination indicator (TFCI) in a universal mobile telecommunications system (UMTS). In one aspect, a method includes receiving by a UE coded TFCI bit sequence on a physical channel, determining a range of TFCI bits that contain information, performing early decoding of the received TFCI bit sequence; and limiting the search set of decoded TFCI bits to the determined range of TFCI bits. The range of TFCI bits that contain information may be determined from a code book.
Abstract:
A user equipment (UE) and a method of using the UE are provided for fulfilling a network's intent to increase or decrease the serving grant for the UE in spite of a deadlock condition that may otherwise prevent fulfillment of the network's intent. That is, upon determining the network's intent, the UE may alter its serving grant according the intent by altering the number of packets for transmission in a TTI.
Abstract:
Aspects of the disclosure provide a solution that a user equipment (UE) can avoid unnecessary transmission of uplink radio link control (RLC) protocol data units (PDUs) and transition between Radio Resource Control states in a Universal Mobile Telecommunications System (UMTS) network, thereby reducing signaling and power consumption overhead and latency at the UE.