Abstract:
A method for image scanning by an electronic device is described. The method includes obtaining an image pyramid including a plurality of scale levels and at least a first pyramid level for a frame. The method also includes providing a scanning window. The method further includes scanning at least two of the plurality of scale levels of the frame at a plurality of scanning window locations. A number of scanning window locations is equal for each scale level of the at least two scale levels of the first pyramid level.
Abstract:
A method includes selecting at least two objects within a primary video stream, generating a first video stream from the primary video stream that includes a first of the selected objects, and generating a second video stream from the primary video stream that includes a second of the selected objects. The primary video stream has a primary field of view, and the first and second video streams have respective first and second fields of view that are more narrow than the primary field of view. The first field of view includes a portion of the primary field of view that is not within the second field of view, and the second field of view includes a portion of the primary field of view that is not within the first field of view.
Abstract:
A method performed by an electronic device is described. The method includes generating a plurality of bounding regions based on an image. The method also includes determining a subset of the plurality of bounding regions based on at least one criterion and a selected area in the image. The method further includes processing the image based on the subset of the plurality of bounding regions.
Abstract:
A method for obtaining structural information from a digital image by an electronic device is described. The method includes obtaining a digital image. The method also includes determining a gradient vector for each pixel in a region of interest of the digital image. The method further includes transforming each pixel in the region of interest in accordance with a transform. Transforming each pixel includes determining, for each pixel, a first set of pixels. The first set of pixels includes any pixel along a line that is collinear with or perpendicular to the gradient vector and passes through a pixel location. Transforming each pixel includes incrementing with signed integer values, for each pixel, a first set of values in a transform space corresponding to any of the first set of pixels that are in a first direction of the line.
Abstract:
A method performed by an electronic device is described. The method includes determining a haziness confidence level based on multiple modalities. The method also includes determining whether to perform an action based on the haziness confidence level. The method may include performing the action, including performing haziness reduction based on the haziness confidence level.
Abstract:
A method includes selecting at least two objects within a primary video stream, generating a first video stream from the primary video stream that includes a first of the selected objects, and generating a second video stream from the primary video stream that includes a second of the selected objects. The primary video stream has a primary field of view, and the first and second video streams have respective first and second fields of view that are more narrow than the primary field of view. The first field of view includes a portion of the primary field of view that is not within the second field of view, and the second field of view includes a portion of the primary field of view that is not within the first field of view.
Abstract:
A method includes receiving information that identifies a reference position in a location space. The method also includes receiving data that identifies one among a plurality of candidate geometrical arrangements. The method also includes producing a representation that depicts a plurality of objects which are arranged, relative to the reference position in the location space, according to the identified candidate geometrical arrangement.
Abstract:
A method of image retrieval includes obtaining information identifying a plurality of selected objects and selecting one among a plurality of candidate geometrical arrangements. This method also includes, by at least one processor, and in response to the selecting, identifying at least one digital image, among a plurality of digital images, that depicts the plurality of selected objects arranged according to the selected candidate geometrical arrangement.
Abstract:
A method for detecting and tracking a target object is described. The method includes performing motion-based tracking for a current video frame by comparing a previous video frame and the current video frame. The method also includes selectively performing object detection in the current video frame based on a tracked parameter.
Abstract:
A method performed by an electronic device is described. The method includes determining a local motion pattern by determining a set of local motion vectors within a region of interest between a previous frame and a current frame. The method also includes determining a global motion pattern by determining a set of global motion vectors between the previous frame and the current frame. The method further includes calculating a separation metric based on the local motion pattern and the global motion pattern. The separation metric indicates a motion difference between the local motion pattern and the global motion pattern. The method additionally includes tracking an object based on the separation metric.