Abstract:
A communication device includes a resource allocation module to allocate coax resources for signals to be transmitted over a cable plant and a coax physical layer device to transmit the signals over the cable plant using the allocated coax resources. The communication device also includes a media access controller, coupled to the multi-point control protocol implementation and the coax physical layer device, to provide to the coax physical layer device a bitstream that includes data for the signals and also includes information specifying the allocated coax resources.
Abstract:
A coax line terminal (CLT) transmits allocations of upstream bandwidth to a plurality of coax network units (CNUs). In response to the allocations, the CLT receives frames with data in a plurality of physical resource blocks that each correspond to a distinct set of subcarriers. The plurality of physical resource blocks includes a first group of physical resource blocks that all have a first constant allowed capacity. Sizes and modulation orders of respective physical resource blocks in the first group vary as defined by a first modulation profile. The data in the first group are received from one or more CNUs that are assigned the first modulation profile.
Abstract:
A communication device includes a resource allocation module to allocate coax resources for signals to be transmitted over a cable plant and a coax physical layer device to transmit the signals over the cable plant using the allocated coax resources. The communication device also includes a media access controller, coupled to the multi-point control protocol implementation and the coax physical layer device, to provide to the coax physical layer device a bitstream that includes data for the signals and also includes information specifying the allocated coax resources.
Abstract:
An optical-coax unit (OCU) includes an optical PHY to receive and transmit optical signals and a coax PHY to receive and transmit coax signals. The OCU also includes a media-independent interface to provide a first continuous bitstream from the optical PHY to the coax PHY and a second continuous bitstream from the coax PHY to the optical PHY. The first continuous bitstream corresponds to received optical signals and transmitted coax signals, and the second continuous bitstream corresponds to received coax signals and transmitted optical signals.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device may transmit and receive signals using radio frequency (RF) chains associated with multiple radios configured for different radio access technologies (RATs). The wireless device may determine a signal of interest for each physical antenna of a set of RF chains associated with a RAT used to receive a desired signal. RF chains of the wireless device may be mapped to a virtual antenna configuration, which may be used to mitigate interference and subsequently process the desired receive signal. A determined interference channel may be used along with the determined signal of interest to map the RF chains to the virtual antenna configuration.
Abstract:
A receiver receives packets without prior knowledge of their bandwidths. The receiver calculates a first auto-correlation function for a first channel, a second auto-correlation function for a second channel, and a dot product of the first auto-correlation function and the second auto-correlation function. A packet is detected and its bandwidth classified based at least in part on the dot product.
Abstract:
A method of registering a coax network unit (CNU) in a network is performed at an optical-coax unit (OCU). In the method, a first discovery message is broadcasted to a plurality of CNUs. In response, a first registration request is received from a first CNU of the plurality of CNUs. In response to the first registration request, a proxy entity corresponding to the first CNU is implemented in the OCU. A second discovery message is received from an optical line terminal (OLT). In response to the second discovery message, a second registration request is transmitted to the OLT requesting registration of the proxy entity with the OLT.
Abstract:
A method of signal generation includes selecting a subset of contiguous OFDM symbols from a set of contiguous OFDM symbols, selecting a subset of contiguous subcarriers from a set of subcarriers, and generating a preamble that occupies the subset of contiguous subcarriers in the subset of contiguous OFDM symbols. The preamble includes portions in respective OFDM symbols of the subset of contiguous OFDM symbols. In the time domain each preamble portion corresponds to a repeating sequence of samples when subcarriers outside of the subset of contiguous subcarriers are filtered out. Generating the preamble may include flipping the sign of one or more occurrences of the repeating sequence for a final preamble portion and may include placing modulation symbols on regularly spaced subcarriers in the subset of contiguous subcarriers and phase-shifting the modulation symbols for a respective preamble portion with respect to a previous preamble portion.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device may receive a signal using a plurality of radio frequency (RF) chains, and may digitally sample the signal over a period of time at outputs of the plurality of RF chains. The sampling may result in a plurality of sample time vectors. The device may map the digitally sampled signal to a set of one or more virtual antenna ports. The mapping may be performed for one or more observation sets of digital samples of the signal. Each observation set may represent a window of sample time vectors. The device may process a signal of interest (SoI) by processing digital samples associated with the set of one or more virtual antenna ports. The device may identify an interference channel contributing to interference of the SoI, and the mapping may be based on mitigating the interference of the SoI.
Abstract:
A receiver receives packets without prior knowledge of their bandwidths. The receiver calculates a first auto-correlation function for a first channel, a second auto-correlation function for a second channel, and a dot product of the first auto-correlation function and the second auto-correlation function. A packet is detected and its bandwidth classified based at least in part on the dot product.