Abstract:
Systems, apparatus and methods for triggering a depth sensor and/or limiting bandwidth and/or maintaining privacy are presented. By limiting use of a depth sensor to times when an optical image alone is insufficient, mobile device power is saved. Furthermore, by reducing a size of an optical image to only the portion of the image needed to detect an object, bandwidth is saved and privacy is maintained by not communicating unneeded or undesired information.
Abstract:
Exemplary methods, apparatuses, and systems infer a context of a user or device. A computer vision parameter is configured according to the inferred context. Performing a computer vision task, in accordance with the configured computer vision parameter. The computer vision task may by at least one of: a visual mapping of an environment of the device, a visual localization of the device or an object within the environment of the device, or a visual tracking of the device within the environment of the device.
Abstract:
Method, apparatus, and computer program product for merging multiple maps for computer vision based tracking are disclosed. In one embodiment, a method of merging multiple maps for computer vision based tracking comprises receiving a plurality of maps of a scene in a venue from at least one mobile device, identifying multiple keyframes of the plurality of maps of the scene, and merging the multiple keyframes to generate a global map of the scene.
Abstract:
An apparatus and method for generating parameters for an application, such as an augmented reality application (AR app), using camera pose and gyroscope rotation is disclosed. The parameters are estimated based on pose from images and rotation from a gyroscope (e.g., using least-squares estimation with QR factorization or a Kalman filter). The parameters indicate rotation, scale and/or non-orthogonality parameters and optionally gyroscope bias errors. In addition, the scale and non-orthogonality parameters may be used for conditioning raw gyroscope measurements to compensate for scale and non-orthogonality.
Abstract:
Systems, apparatus and methods for estimating gravity and/or scale in a mobile device are presented. A difference between an image-based pose and an inertia-based pose is using to update the estimations of gravity and/or scale. The image-based pose is computed from two poses and is scaled with the estimation of scale prior to the difference. The inertia-based pose is computed from accelerometer measurements, which are adjusted by the estimation for gravity.
Abstract:
A system and method is described herein for solving for surface normals of objects in the scene observed in a video stream. The system and method may include sampling the video stream to generate a set of keyframes; generating hypothesis surface normals for a set of mappoints in each of the keyframes; warping patches of corresponding mappoints in a first keyframe to the viewpoint of a second keyframe with a warping matrix computed from each of the hypothesis surface normals; scoring warping errors between each hypothesis surface normal in the two keyframes; and discarding hypothesis surface normals with high warping errors between the first and second keyframes.
Abstract:
Embodiments disclosed pertain to the use of user equipment (UE) for the generation of a 3D exterior envelope of a structure based on captured images and a measurement set associated with each captured image. In some embodiments, a sequence of exterior images of a structure is captured and a corresponding measurement set comprising Inertial Measurement Unit (IMU) measurements, wireless measurements (including Global Navigation Satellite (GNSS) measurements) and/or other non-wireless sensor measurements may be obtained concurrently. A closed-loop trajectory of the UE in global coordinates may be determined and a 3D structural envelope of the structure may be obtained based on the closed loop trajectory and feature points in a subset of images selected from the sequence of exterior images of the structure.
Abstract:
Embodiments disclosed pertain to systems, method s and apparatus for the initialization of Computer Vision (CV) applications on user devices (UDs) comprising a camera and a display. In some embodiments, an optimal camera trajectory for initialization of a Computer Vision (CV) application may be determined based on an initial camera pose and an estimated pivot distance. For example, the initial camera pose may be estimated based on a first image captured by the camera. Further, the display may be updated in real-time with an indication of a desired movement direction for the camera. In some embodiments, the indication of desired movement direction may be based, in part, on a current camera pose and the optimal trajectory, where the current camera pose may be estimated based on a current image captured by the camera.
Abstract:
Embodiments of the present invention are directed toward providing intelligent sampling strategies that make efficient use of an always-on camera. To do so, embodiments can utilize sensor information to determine contextual information regarding the mobile device and/or a user of the mobile device. A sampling rate of the always-on camera can then be modulated based on the contextual information.
Abstract:
Embodiments disclosed pertain to the use of user equipment (UE) for the generation of a 3D exterior envelope of a structure based on captured images and a measurement set associated with each captured image. In some embodiments, a sequence of exterior images of a structure is captured and a corresponding measurement set comprising Inertial Measurement Unit (IMU) measurements, wireless measurements (including Global Navigation Satellite (GNSS) measurements) and/or other non-wireless sensor measurements may be obtained concurrently. A closed-loop trajectory of the UE in global coordinates may be determined and a 3D structural envelope of the structure may be obtained based on the closed loop trajectory and feature points in a subset of images selected from the sequence of exterior images of the structure.