Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In a first configuration, the apparatus is an eNB. The eNB constructs an MCCH change notification, and sends the MCCH change notification with a carrier frequency index for a first frequency of a first cell on a second frequency of a second cell. In a second configuration, the apparatus is a UE. The UE receives a configuration with aggregated carriers including a primary carrier from a primary cell and one or more secondary carriers from one or more corresponding secondary cells, and receives an MCCH change notification with a carrier frequency index for a first frequency of a first cell on a second frequency of a second cell. The first cell and the second cell are each one of the primary cell and the secondary cells.
Abstract:
Methods, systems, and devices are described for evolved multimedia broadcast multicast service (eMBMS) utilizing enhanced component carriers (eCCs). A wireless system may send unicast data using resources allocated for multicast transmissions (e.g., eMBMS transmissions). The presence of unicast data in a transmission time interval (TTI) scheduled for multicast transmission may be indicated by a control region within the TTI. A UE may monitor the control region to identify the presence of unicast information. A TTI scheduled for multicast transmission may also include reference signals to aid in the demodulation of multicast or unicast data. In some cases, the reference signals may be front-loaded at the beginning or embedded within the TTI. The embedded reference signals may be configured based on the type of data carried by the TTI scheduled for multicast transmission, or by length of the cyclic prefix used by the TTI scheduled for multicast transmission.
Abstract:
A UE receives a list of neighboring cells of a serving cell serving the UE, and a list of SAIs. The list of neighboring cells may be included in a first system information message and the list of SAIs may be included in a second system information message. The first and second messages may be the same message, e.g., SIB15, or may be different messages SIB4/SIB5 and SIB15. The list of SAI includes those SAI supported by at least one of the serving cell and the neighboring cells. At least one of the SAIs is formatted to include mapping information that maps the SAI to one or more of the neighboring cells included in the list of neighboring cells. The UE processes the at least one SAI to determine the one or more neighboring cells that support the SAI.
Abstract:
A device for receiving streaming data includes a broadcast or multicast middleware unit configured to receive the streaming data via a second service and a proxy unit configured to be disposed between the middleware unit and a client application, the proxy unit further configured to receive an indication of whether the streaming data is to be received via a first service or the second service, when the indication indicates that the streaming data is to be received via the first service: disable the middleware unit; and receive the streaming data via the first service, and when the indication indicates that the streaming data is to be received via the second service: activate the middleware unit to receive the streaming data via the second service, wherein the second service comprises at least one of a broadcast service or a multicast service; and receive the streaming data from the middleware unit.
Abstract:
Systems, methods, and devices of the various embodiments enable the use of a broadcast bearer (such as a Multimedia Broadcast Multicast Service (“MBMS”) bearer), unicast bearer, or both a unicast bearer and a broadcast bearer to deliver content to a receiver device. In various embodiments, network policy governing delivery of one or more service or one or more classes of services via a unicast bearer and a broadcast bearer may be provided to one or more devices in the network. In various embodiments, network policy may be applied to the unicast or broadcast delivery selections of a service to control use of a unicast bearer and/or the broadcast bearer to provision the service.
Abstract:
Systems and methods for control and triggering of machine to machine (M2M) devices (e.g., smart meters). More specifically how to allow an M2M service provider (e.g., utility company) to use an operator's network to communicate with the M2M device connected with a UE/GW associated with the operator's network. The M2M service provider may receive identification of the UE/GW, but not for the M2M device. By transmitting an identifier for the M2M device along with an identifier for the UE/GW, the network operator may define establish and maintain a communication path specific to M2M devices. Similar techniques may be incorporated to allow the M2M service provider to locate and trigger the M2M device.
Abstract:
Methods, systems, and devices are described for a system that supports wireless communication with a first set of devices using a first OFDM symbol duration associated with a first tone spacing (i.e., a first physical layer (PHY) configuration) and second set of devices using a PHY configuration associated with a second tone spacing. A base station may transmit a set of discovery reference signals (DRS) in a narrowband region of a primary channel of a carrier. The DRS may have the first PHY configuration and a secondary channel of the carrier may support communications using the second PHY configuration. The base station may transmit a first system information (SI) message for one set of devices using the first PHY configuration, and it may transmit a second SI message for another set of devices using the second PHY configuration.
Abstract:
Access terminals are adapted to facilitate use of modified cell reselection parameters and/or procedures for access terminals exhibiting low or no mobility. An access terminal may employ one or more mobile thresholds to determine whether to perform cell reselection when the access terminal is mobile, and one or more stationary threshold to determine whether to perform cell reselection when the access terminal is stationary or substantially stationary. Methods operational on access terminals include determining the access terminal to be stationary or substantially stationary, and employing one or more stationary thresholds to determine whether to perform a cell reselection when the access terminal is determined to be at least substantially stationary. Other aspects, embodiments, and features are also included.
Abstract:
Methods, systems, and devices for wireless communication are described. A transmitting device, which may be configured without a radio link control (RLC) layer, may receive a packet data convergence protocol (PDCP) protocol data unit (PDU) at a media access control (MAC) layer. The device may then generate a set of transport blocks at the MAC layer using the PDCP PDU and transmit them over a wireless connection. A receiving device, which may also be configured without an RLC layer, may receive the transport blocks at the MAC layer, generate a MAC service data unit (SDU), and convey the MAC SDU to a PDCP. In some cases, the receiving device may then send an acknowledgement (ACK) or negative acknowledgement (NACK) for each transport block that includes a portion of the PDCP PDU, and the transmitting device may indicate to the PDCP layer whether the PDCP PDU was successfully received.
Abstract:
Embodiments include methods to manage tune-away events on a multi-subscription multi-standby wireless communication device having an RF resource supporting a first subscription and a second subscription by changing an order of Multicast Traffic Channel (MTCH) transmissions across a number of Multicast Channel Scheduling Periods (MSPs). In various embodiments, the order of MTCH transmissions may be changed by rotating the Logical Channel Identifier (LCID) order in a Multicast Channel (MCH) Scheduling Information (MSI) Media Access Control (MAC) message sent from a serving base station or tower (e.g., a serving Evolved Node B (eNB)) to a multi-subscription multi-standby wireless communication device. In various embodiments, a multi-subscription, multi-standby wireless communication device may activate a MTCH for one or more service according to the dynamic MSI MAC message.