Abstract:
Techniques for determining a relative Time Calibration (dTcal) value for a mobile device model are disclosed. An example of an apparatus according to the disclosure includes a memory, a receiver configured to receive measurements and a mobile device model information from mobile devices disposed in geographic areas, a processor configured to determine a baseline mobile device model and other mobile devices models based on the measurements, calculate a baseline measurement value based on the measurement values that correspond to the baseline mobile device model, determine difference values based on the baseline measurement value and the other mobile device model measurement values, determine a model specific dTcal value based on the difference values for at least one of the other mobile device models, and store the model specific dTcal value in the memory.
Abstract:
A method for requesting assistance data includes, at a mobile device, determining an expected quality of service information, transmitting a request for assistance data, transmitting the expected quality of service information, and receiving an assistance data file comprising heat map information, wherein the heat map information includes a heat map grid resolution and a suitable quantization precision level for heat map values as determined, at least in part, based on the expected quality of service information.
Abstract:
A method for generating a two-dimensional radio coverage map comprising a plurality of physical levels including a first physical level and a second physical level. The access point is located above the second physical level. A first radio coverage map comprising original points located at a first distance from the access point is generated. Each of the original points has a first predicted value. A distance is selected to place the two-dimensional radio coverage map at the target distance from the access point. Coordinates of map points of the two-dimensional radio coverage map are generated. Each of the map points corresponds to one of the original points. An offset value representing an attenuation due to the target distance being different than the first distance is computed. For each of the map points, a predicted received signal strength value is generated by adding the offset value to the first predicted value of the corresponding one of the original points.
Abstract:
Disclosed is a method and apparatus for managing a driving plan of an autonomous vehicle. The method may include obtaining observations of a neighboring vehicle using one or more sensors of the autonomous vehicle. The method may also include classifying one or more behavioral driving characteristics of the neighboring vehicle based on the observations. Furthermore, the method may include updating the driving plan based on a classification of the one or more behavioral driving characteristics of the neighboring vehicle, and controlling one or more operations of the autonomous vehicle based on the updated driving plan.
Abstract:
In a tracking of a position and motion of a device, a set of hypothetical locations of the device is generated. Hypothetical locations among the set are propagated to respective hypothetical next locations, using respective location-specific propagation models associated with the hypothetical locations. Sensor information having correlation to a location of the device is received. An importance weighting for the hypothetical next locations is calculated using the new sensor information. Probable locations of the device are generated using the importance weighting.
Abstract:
A visual beacon, such as a Quick Response (QR) code or other type of artificial visual beacon is identified based on a coarse position and content information, and optionally, type of the visual beacon. For example, position may be based on latitude and longitude, e.g., from a satellite positioning system, or the CellID from a cellular network. The content information may be based on a sampling of the content before or after decoding. Content information may alternatively be all of the decoded content or an image of the visual beacon. Thus, for example, a mobile platform may generate a visual beacon identifier using the position and content information, which is transmitted to a navigation assistance server. The server can access and transmit to the mobile platform a navigation assistance message associated with the visual beacon identifier. If no visual beacon identifier is found, the server may enter the information.
Abstract:
Disclosed are systems, methods and devices for application of determining position information for mobile devices. In specific implementations, measurement of a signal travel time and a signal's strength may be combined to characterize a transmission power of the signal's transmitter. The characterized transmission power may be applied to affect expected signal strength signature values for use of the signal's transmitter may be updated in order to enhance a location based service where location may be effected by accuracy of a transmitter's power.
Abstract:
Disclosed are systems, methods and techniques for obtaining round trip time (RTT) measurements from acquisition of signals at one or more mobile devices, the signals being transmitted by one or more transmitters; approximating locations of the one or more mobile devices while obtaining the RTT measurements; and combining the measurements to determine expected RTT signature values at discrete positions in the area based, at least in part, on the obtained RTT measurements and the approximated locations.
Abstract:
Techniques are provided for providing a processing delay estimate of an access point, or turnaround calibration function (TCF), associated with round trip time (RTT) measurements. Mobile devices, access points, and/or other systems can utilize these techniques to derive processing delay from the RTT measurements. Crowdsourcing can also be used to help increase the accuracy of the processing delay estimate, which can be propagated to multiple devices.
Abstract:
A method for locating a target transceiver in a wireless communication system includes: obtaining at least one scan list indicating a set of transceivers including the target transceiver; identifying, from stored geotagging data, locations of at least some previously located transceivers represented in the at least one scan list that are distinct from the target transceiver; generating a list of neighbor transceivers corresponding to the target transceiver based on the at least one scan list; and calculating an estimated location of the target transceiver using the list of neighbor transceivers and the locations of the previously located transceivers represented in the at least one scan list.