Abstract:
A wireless communication device comprises a first wireless interface configured to communicate with a device over a first wireless network, and a second wireless interface configured to communicate with a remote server over a second wireless network, the remote server storing one or more executables. The wireless communication device includes a configured to receive device configuration information from the device over the first wireless network, the device configuration information identifying at least processing hardware resources in the device. The controller is configured to select an executable based on the device configuration information, the executable for configuring the device to process data in a particular format and determine whether the selected executable is stored within the wireless communication device, and if not, to retrieve the selected executable from the remote server by way of the second wireless network, and download the selected executable to the device over the first wireless network.
Abstract:
Methods, systems and devices for locating a wireless identity transmitter with a central server connected with one or more proximity broadcast receivers, such as stationary receivers or mobile devices operating as wireless receivers. The wireless identity transmitter may be a compact device configured to broadcast messages, such as through Bluetooth® advertisements, including an identification code. When within proximity, a proximity broadcast receiver may receive broadcast messages from the wireless identity transmitter and relay location information along with the wireless identity transmitter's identification code to a central server as sighting messages. The proximity broadcast receiver's own location may provide an approximate location for the wireless identity transmitter. The central server may process sighting messages, which may include signal strength information, to accurately locate the wireless identity transmitter. The central server may transmit data to third-party devices and/or mobile devices of users in response to receiving sightings messages.
Abstract:
Systems and techniques are provided for processing audio data. For instance, a process can include detecting a first audio data between two or more in-person participants of a plurality of in-person participants of a group communication session. The first audio data can be identified as private based on one or more cues associated with the first audio data. A second audio data can be identified between the two or more in-person participants. The second audio data can be identified as non-private based on one or more additional cues associated with the second audio data, wherein the one or more additional cues associated with the second audio data are different from the one or more cues associated with the first audio data. The second audio data can be output based on identifying the second audio data as non-private.
Abstract:
Reduced Advanced Audio Distribution Profile (A2DP) latency on a link between a source and a pair of headphones may be achieved by improving the quality of the link between secondary and primary and establishing a direct link between the source and secondary to mitigate the link quality issues of the source and primary link. In one example, this involves receiving, via a first receiver, packets from a source on a first wireless connection, determining, by the first receiver, that a first packet received via the first wireless connection has an error, establishing a second connection between the first receiver and a second receiver, and establishing a third connection between the second receiver and the source. In particular, the first receiver may be configured as a primary True Wireless Stereo (TWS) Bluetooth device and the second receiver may be configured as a secondary TWS Bluetooth device.
Abstract:
Examples herein include apparatus and methods for overriding a media access control module acknowledgment and non-acknowledgment scheme. In one example, a codec module determines if an error-corrected packet is acceptable in response to the detection by the media access module of an uncorrectable error in a received packet, and overrides the media access control module to prevent a non-acknowledgment response from being sent when the error-corrected packet is acceptable.
Abstract:
Methods, systems, and devices for wireless communications at a wireless audio device are described. A first (e.g., primary) wireless audio device may initiate a role switch procedure with a second (e.g., secondary) wireless audio device. The first wireless audio device may disable traffic flow between the source device and the first wireless audio device and transmit synchronization information and timing information necessary for taking over the role of primary wireless audio device to the second wireless audio device. The first wireless audio device may transmit a device role switch message, and the first wireless audio device and the second wireless audio device may perform the role switch. After performing the role switch, the first wireless audio device may assume the role of a secondary wireless audio device and the second wireless audio device may assume the role of a primary wireless audio device.
Abstract:
This disclosure provides methods, devices and systems for signaling modulation schemes and stream parameters such that the modulation schemes and stream parameters can be adapted dynamically while maintaining an existing wireless connection. Some implementations include signaling, via a first channel, a set of stream parameters that govern communications on a second channel when a particular modulation scheme is used to modulate the packets transmitted via the second channel. A transmitting device may select a respective set of stream parameters for each of multiple modulation schemes. For example, in addition to an initial modulation scheme and set of stream parameters, the transmitting device can select alternative modulation schemes and sets of stream parameters that are optimized for the respective modulation schemes. The transmitting device signals the modulation schemes and the respective sets of stream parameters via the first channel in advance of switching modulation schemes for the second channel. The transmitting device is enabled to change the modulation scheme and the set of stream parameters on the fly by including an indication of the modulation scheme in the next packet it transmits via the second channel.
Abstract:
As many applications, such as wireless headsets used with cellular phones, require mostly error free data to accurately reproduce a telephone conversation, uncorrected erroneous data packets may impact a perceived quality of a given application. The error correction techniques of the present disclosure promote error-correction in communication systems that lack FEC with respect to one or more portions of a data packet. The techniques therefore provide error correction for the entire packet, including those portions not protected by any imbedded error correction mechanism. As a result, data communications over noisy communication mediums may be improved as the techniques may reduce bit error rates, and increase the sensitivity of the receiving device such that the transmission power of a data packet may be reduced. For voice packets or other streaming data packets, the techniques promote improved audio quality over systems that do not employ the techniques described in the present disclosure.
Abstract:
Devices and methods for connected isochronous stream (CIS) swapping are disclosed. In an example Bluetooth™ setting, a smartphone can be connected to multiple earbuds. It is possible that both earbuds include microphones, but only one microphone is enabled at a given time. That is, only one of the CISes established between the smartphone and the earbuds is bidirectional, and the other is unidirectional. The disclosed techniques enable the CISes to be swapped between the earbuds so that the earbud with better microphone quality will have ownership of the bidirectional CIS.
Abstract:
A wireless device is provided that determines a set of expected packets from a second wireless device, each expected packet of the set of expected packets comprising an expected cyclic redundancy check (CRC) of a set of expected CRCs, receives a packet from the second wireless device, the received packet comprising a header and a first CRC, determines whether a second CRC generated based on the header in the received packet matches the first CRC received in the received packet, determines, when the generated second CRC does not match the first CRC received in the received packet, a third CRC of the set of expected CRCs based on the first CRC, and replaces the received header with a header corresponding to the determined third CRC.