Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for sending fast negative acknowledgements (NACKs) after a user equipment (UE) tunes back to a first network after tuning away from the first network. The UE may determine that a trigger event has occurred, and in response to the determination, modify a NACK timing configuration from a default configuration. Modifying the NACK timing configuration may include using an aggressive NACK timing configuration for a configurable period of time, in response to detecting a trigger event. The trigger event may include detecting missed packets after a tune back, unavailability of sufficient memory to hold packets until a gap created by missed packets may be filled, or tuning back to a network.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a user equipment (UE) or component thereof. The apparatus may be configured to transmit to a base station a first request to transmit data in a buffer. The apparatus may be further configured to transmit to the base station a second request to transmit the data in the buffer in absence of a grant in response to the first transmit request. The apparatus may be further configured to remain awake for at least a portion of a scheduled discontinuous reception (DRX) sleep state following the transmission of the second request.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may monitor packet data convergence protocol (PDCP) counter values associated with PDCP packets. The UE may control a PDCP mode of the UE based at least in part on the monitoring of the PDCP counter values. Numerous other aspects are provided.
Abstract:
Aspects described herein relate to wireless communications. Protocol data units (PDUs) can be received at a network layer from one or more transmitting nodes using a link associated with each respective transmitting node. One or more missing PDUs can be detected based, at least in part, on sequence numbers of the received PDUs. A timer can be started based on the detection of the one or more missing PDUs. In response to expiration of the timer, and without receiving the one or more missing PDUs before the expiration of the timer, a lower network layer can be notified that the one or more missing PDUs are received to prevent attempted transmitting/retransmitting or other processing of the one or more missing PDUs.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for quick radio link control (RLC) retransmission on hybrid automatic repeat request (HARQ) failure during tune away. According to certain aspects, a method for wireless communications is provided. The method generally includes performing communications with a base station (BS) using radio components tuned to a first air interface, detecting a tune-away of the radio components from the first air interface to a second air interface while performing the communications, and scheduling one or more packets for retransmission to the BS upon completion of the tune-away, wherein the one or more packets are one or more packets that failed to be transmitted due to the tune-away.
Abstract:
Aspects of the present disclosure provide methods, systems, devices and/or apparatuses for logical channel prioritization by a user equipment (UE) within a Long Term Evolution (LTE) wireless communications network. The UE may have multiple logical channels each associated with one or more applications or services of the UE. The UE may identify whether a quality of service (QoS) obligation to allocate at least a portion of uplink resources to a logical channel for a time period is present, and may also identify whether the logical channel has control data to be transmitted from the UE. If a QoS obligation and/or control data are present for the logical channel, the UE may allocate at least a portion of the uplink resources to the logical channel.