Abstract:
In a particular embodiment, a wireless power receiver apparatus includes a coil configured to wirelessly receive power via a magnetic field generated by a transmitter. The wireless power receiver apparatus can include a housing that includes a first volume configured to house the coil. The housing can also include a second volume configured to house electronic components. The second volume can be bound by a horizontal shielding member along a first portion of the second volume. The horizontal shielding member can define a horizontal shielding member plane substantially parallel to a plane defined by the coil. The second volume can also be bounded by a vertical shielding member along a second portion of the second volume. The vertical shielding member can define a vertical shielding member plane substantially orthogonal to the plane defined by the coil.
Abstract:
An apparatus, a system and a method for wireless power transfer are disclosed. A method of forming a physical core of a wireless power transfer device includes positioning two or more electromagnetically permeable members adjacent to one another and applying longitudinal pressure to an end of the electromagnetically permeable members, the electromagnetically permeable members at least partially encapsulated in retaining compound. A wireless power transfer device includes a casing in which is housed an induction coil, a plurality of electromagnetically permeable members arranged in a line and a retaining compound.
Abstract:
Systems, methods and apparatus for a wireless power transfer are disclosed. In one aspect a wireless power transfer apparatus is provided. The apparatus includes a casing. The apparatus further includes an electrical component housed within the casing. The apparatus further includes a sheath housed within the casing. The apparatus further includes a conductive filament housed within the sheath. The electrical component is electrically connected with the conductive filament. The casing is filled with a settable fluid bound with the sheath to form a structural matrix.
Abstract:
Methods and apparatuses for wireless power transfer, and particularly, wireless power transfer to remote systems such as electric vehicles are disclosed. In one aspect, a wireless power transfer device is provided comprising a casing housing at least one component, with a first portion of the casing containing a set first flowable medium, and a second portion of the casing containing a second set flowable medium having a different density to that of the first set flowable medium. The casing can include a locating portion, with the locating portion in contact with a flowable medium set within the casing. In another aspect, a method of manufacturing a wireless power transfer device is provided. During manufacturing, a casing of the device may be loaded to maintain a desired shape while at least one component and a settable flowable medium are introduced into the casing.
Abstract:
In a particular embodiment, a wireless power receiver apparatus includes a coil configured to wirelessly receive power via a magnetic field generated by a transmitter. The wireless power receiver apparatus can include a housing that includes a first volume configured to house the coil. The housing can also include a second volume configured to house electronic components. The second volume can be bound by a horizontal shielding member along a first portion of the second volume. The horizontal shielding member can define a horizontal shielding member plane substantially parallel to a plane defined by the coil. The second volume can also be bounded by a vertical shielding member along a second portion of the second volume. The vertical shielding member can define a vertical shielding member plane substantially orthogonal to the plane defined by the coil.
Abstract:
An apparatus, a system and a method for wireless power transfer are disclosed. A method of forming a physical core of a wireless power transfer device includes positioning two or more electromagnetically permeable members adjacent to one another and applying longitudinal pressure to an end of the electromagnetically permeable members, the electromagnetically permeable members at least partially encapsulated in retaining compound. A wireless power transfer device includes a casing in which is housed an induction coil, a plurality of electromagnetically permeable members arranged in a line and a retaining compound.
Abstract:
Systems, methods and apparatuses for wireless power transfer are disclosed. In one aspect, a wireless power transfer apparatus is provided comprising a casing with at least one projecting member projecting from an inner side of the surface of the casing that is subject to external compression forces. An induction coil and other components such as insulating layers and magnetically permeable members are positioned around at least one of the projecting members and maintained in position by the projecting members. The wireless power transfer apparatus is able to withstand large compressive forces, such as those imparted by heavy vehicles and the like passing over the apparatus when positioned on the ground in a wireless power transfer system.