Abstract:
A method for visual inertial odometry (VIO)-aided global positioning is described. The method includes updating an extended Kalman filter (EKF) state including a current pose and a sliding window of multiple prior poses. The sliding window includes poses at a number of most recent global positioning system (GPS) time epochs. Updating the EKF includes updating an EKF covariance matrix for the prior poses and the current pose in the EKF state. The method also includes determining, at a GPS epoch, a relative displacement between each of the updated prior poses and the current pose. The method further includes determining an error covariance of each of the relative displacements based on cross-covariances between each of the updated prior poses and the current pose in the EKF covariance matrix. The method additionally includes using the relative displacements and the error covariances to fuse pseudorange measurements taken over multiple epochs.
Abstract:
Embodiments disclosed pertain to the use of user equipment (UE) for the generation of a 3D exterior envelope of a structure based on captured images and a measurement set associated with each captured image. In some embodiments, a sequence of exterior images of a structure is captured and a corresponding measurement set comprising Inertial Measurement Unit (IMU) measurements, wireless measurements (including Global Navigation Satellite (GNSS) measurements) and/or other non-wireless sensor measurements may be obtained concurrently. A closed-loop trajectory of the UE in global coordinates may be determined and a 3D structural envelope of the structure may be obtained based on the closed loop trajectory and feature points in a subset of images selected from the sequence of exterior images of the structure.
Abstract:
Embodiments disclosed obtain a plurality of measurement sets from a plurality of sensors in conjunction with the capture of a sequence of exterior and interior images of a structure while traversing locations in and around the structure. Each measurement set may be associated with at least one image. An external structural envelope of the structure is determined from exterior images of the structure and the corresponding outdoor trajectory of a UE. The position and orientation of the structure and the structural envelope is determined in absolute coordinates. Further, an indoor map of the structure in absolute coordinates may be obtained based on interior images of the structure, a structural envelope in absolute coordinates, and measurements associated with the indoor trajectory of the UE during traversal of the indoor area to capture the interior images.
Abstract:
A method performed by an electronic device is described. The method includes determining a predicted velocity relative to Earth corresponding to a first epoch using a camera and an inertial measurement unit (IMU). The method also includes determining, using a Global Positioning System (GPS) receiver, a GPS velocity relative to Earth. The method further includes determining a difference vector between the predicted velocity and the GPS velocity. The method additionally includes refining a bias estimate and a scale factor estimate of IMU measurements proportional to the difference vector. The method also includes refining a misalignment estimate between the camera and the IMU based on the difference vector. The method further includes providing pose information based on the refined bias estimate, the refined scale factor, and the refined misalignment estimate.
Abstract:
A method for visual inertial odometry (VIO)-aided global positioning is described. The method includes updating an extended Kalman filter (EKF) state including a current pose and a sliding window of multiple prior poses. The sliding window includes poses at a number of most recent global positioning system (GPS) time epochs. Updating the EKF includes updating an EKF covariance matrix for the prior poses and the current pose in the EKF state. The method also includes determining, at a GPS epoch, a relative displacement between each of the updated prior poses and the current pose. The method further includes determining an error covariance of each of the relative displacements based on cross-covariances between each of the updated prior poses and the current pose in the EKF covariance matrix. The method additionally includes using the relative displacements and the error covariances to fuse pseudorange measurements taken over multiple epochs.
Abstract:
A method performed by an electronic device is described. The method includes determining a predicted velocity relative to Earth corresponding to a first epoch using a camera and an inertial measurement unit (IMU). The method also includes determining, using a Global Positioning System (GPS) receiver, a GPS velocity relative to Earth. The method further includes determining a difference vector between the predicted velocity and the GPS velocity. The method additionally includes refining a bias estimate and a scale factor estimate of IMU measurements proportional to the difference vector. The method also includes refining a misalignment estimate between the camera and the IMU based on the difference vector. The method further includes providing pose information based on the refined bias estimate, the refined scale factor, and the refined misalignment estimate.
Abstract:
Embodiments disclosed pertain to the use of user equipment (UE) for the generation of a 3D exterior envelope of a structure based on captured images and a measurement set associated with each captured image. In some embodiments, a sequence of exterior images of a structure is captured and a corresponding measurement set comprising Inertial Measurement Unit (IMU) measurements, wireless measurements (including Global Navigation Satellite (GNSS) measurements) and/or other non-wireless sensor measurements may be obtained concurrently. A closed-loop trajectory of the UE in global coordinates may be determined and a 3D structural envelope of the structure may be obtained based on the closed loop trajectory and feature points in a subset of images selected from the sequence of exterior images of the structure.
Abstract:
Embodiments disclosed pertain to the use of user equipment (UE) for the generation of a 3D exterior envelope of a structure based on captured images and a measurement set associated with each captured image. In some embodiments, a sequence of exterior images of a structure is captured and a corresponding measurement set comprising Inertial Measurement Unit (IMU) measurements, wireless measurements (including Global Navigation Satellite (GNSS) measurements) and/or other non-wireless sensor measurements may be obtained concurrently. A closed-loop trajectory of the UE in global coordinates may be determined and a 3D structural envelope of the structure may be obtained based on the closed loop trajectory and feature points in a subset of images selected from the sequence of exterior images of the structure.
Abstract:
Systems, apparatus and methods for estimating gravity and/or scale in a mobile device are presented. A difference between an image-based pose and an inertia-based pose is using to update the estimations of gravity and/or scale. The image-based pose is computed from two poses and is scaled with the estimation of scale prior to the difference. The inertia-based pose is computed from accelerometer measurements, which are adjusted by the estimation for gravity.
Abstract:
A Visual Inertial Tracker (VIT), such as a Simultaneous Localization And Mapping (SLAM) system based on an Extended Kalman Filter (EKF) framework (EKF-SLAM) can provide drift correction in calculations of a pose (translation and orientation) of a mobile device by obtaining location information regarding a target, obtaining an image of the target, estimating, from the image of the target, measurements relating to a pose of the mobile device based on the image and location information, and correcting a pose determination of the mobile device using an EKF, based, at least in part, on the measurements relating to the pose of the mobile device.