Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.
Abstract:
This work provides event selection in the context of gas leak pinpointing using mobile gas concentration and atmospheric measurements. The main idea of the present approach is to use a moving minimum to estimate background gas concentration, as opposed to the conventional use of a moving average for this background estimation.
Abstract:
For cavity enhanced optical spectroscopy, the cavity modes are used as a frequency reference. Data analysis methods are employed that assume the data points are at equally spaced frequencies. Parameters of interest such as line width, integrated absorption etc. can be determined from such data without knowledge of the frequencies of any of the data points.
Abstract:
Improved cavity enhanced absorption spectroscopy is provided using a piecewise tunable laser by using a lookup table for laser tuning that is configured specifically for this application. In preferred embodiments this is done in combination with a laser control strategy that provides precise wavelength determination using cavity modes of the instrument as a reference.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.
Abstract:
In some embodiments, at least one processor determines a range of search directions to a suspected gas leak source by receiving data representative of a plurality of wind direction measurements relative to a geo-referenced location of at least one gas concentration measurement point. The range of search directions extending from the location of the gas concentration measurement point is calculated according to a variability of the wind direction measurements.
Abstract:
In some embodiments, a computer system generates display content indicating a likely direction and estimated distance to a potential gas leak source. The content includes a street map and at least one search area indicator on the map that indicates a search area suspected to have a gas leak source. The search area indicator has an axis indicating a representative wind direction relative to a geo-referenced location of at least one gas concentration measurement point. The search area indicator also has a width relative to the axis. The width is indicative of a wind direction variability associated with a plurality of wind direction measurements in an area of the gas concentration measurement point. The axis also preferably has a length indicating an estimated maximum distance to the potential gas leak source.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.
Abstract:
In cavity ring-down spectroscopy (CRDS), scattering into the backward mode of a traveling wave ring-down cavity can degrade conventional CRDS performance. We have found that this performance degradation can be alleviated by measuring the backward mode signal emitted from the ring-down cavity, and using this signal to improve the processing for extracting ring-down times from the measured data. For example, fitting an exponential to the sum of the intensities of the forward and backward signals often provides substantially better results for the ring-down time than fitting an exponential to the forward signal alone. Other possibilities include extracting cavity eigenmode signals from the forward and backward signals and performing separate exponential fits to the eigenmode signals. An optical circulator can be used to facilitate measurement of the backward mode signal.