Abstract:
A cleaning device includes: a range finding sensor; an acquisition unit which acquires a map and a first path along which the cleaning device is to move; a first identification unit which identifies a feature point which is a point where a distance between the object and the range finding sensor varies; a second identification unit which identifies a virtual point which is, among points on a virtual line segment, a point closest to the first path when the virtual line segment does not intersect with the first path, the virtual line segment extending toward the first path from the feature point, and having a maximum length within the predetermined range-finding range; a converter which converts the first path into a second path which passes through the virtual point; and a motor controller which causes the cleaning device to move along the second path.
Abstract:
A robot system for assisting a patient in standing up and/or sitting down is provided. The robot system includes the following elements. A drive mechanism executes a drive pattern for assisting the patient in standing up and/or sitting down. An instruction input device receives an instruction to cause the drive mechanism to execute the drive pattern. A state acquirer acquires an execution state of the drive mechanism which is executing the drive pattern. A controller decides whether or not to cause the drive mechanism to execute the instruction received by the instruction input device, on the basis of the execution state acquired by the state acquirer, and controls the driving of the drive mechanism.
Abstract:
A master apparatus for a master slave apparatus, the master apparatus controlling a slave apparatus, the master apparatus including a hand operation mechanism configured to be operated by a person for opening and closing a hand mechanism including a pair of opening and closing members, the hand mechanism being connected to a slave mechanism, the slave apparatus including the slave mechanism and the hand mechanism. The hand operation mechanism includes a fixed unit, an opening and closing operation unit, and a slide unit. The opening and closing operation unit is connected to the slide unit, is capable of reciprocating with respect to the fixed unit, and is openable and closable with respect to the fixed unit. The master hand controlling device controls opening and closing of the pair of opening and closing members on the basis of an opening and closing amount of the opening and closing operation unit.
Abstract:
A first angle acquiring unit acquires a rotational angle of a characteristic portion in a predetermined region on an inlet side of an insertion member of a linear body extending through the insertion member. From an image of the linear body inserted into a body of a subject, a second angle acquiring unit acquires a direction of a curved portion of the linear body inserted into the body of the subject and then acquires a rotational angle of a distal end of the linear body. A torque calculation unit calculates a torque based on a difference between the rotational angle in the predetermined region acquired by the first angle acquiring unit and the rotational angle of the distal end of the linear body acquired by the second angle acquiring unit.
Abstract:
A control apparatus for a master-slave robot includes a force correction section detecting unit that detects a section at which force information from at least one of force information and speed information is corrected, and a force correcting unit that corrects the force information at a section detected as a force correction section by the force correction section detecting unit. A small external force applied to a slave manipulator is magnified and transmitted to a master manipulator, or an excessive manipulation force applied to the master manipulator is reduced and transmitted to the slave manipulator.
Abstract:
In a standing-up motion assist system for assisting a care receiving person, a care belt includes a first holder that holds a neck part or a back part of the care receiving person, a second holder that holds a lumbar part of the care receiving person, a third holder that connects the first holder and the second holder and holds armpits of the care receiving person, a second connector located at a chest of the care receiving person, and a first connector that connects the first holder and the second holder. A pulling mechanism is connected to the second connector and pulls the second connector. A controller controls the pulling mechanism so as to pull the second connector in a forward and upward direction with reference to the care receiving person, and, thereafter, pull the second connector in a backward and upward direction with reference to the care receiving person.
Abstract:
A robot includes an arm mechanism that operates in accordance with a first motion pattern for supporting a user with a standing-up motion which starts in a sitting posture and finishes in a standing posture, a control unit that (i) acquires first information used to identify a predetermined position of the arm mechanism corresponding to a half-crouching posture of the user during a motion in accordance with the first motion pattern and (ii) detects whether the current position of the arm mechanism operating in accordance with the first motion pattern is included in a first range including the predetermined position identified by the first information, and a presentation unit that presents a first signal if the control unit detects that the position of the arm mechanism is included in the first range.
Abstract:
A robot includes a tractor, a walker, an input device, and a controller. The tractor includes a connector and pulls a user through the connector. The walker includes wheels for moving the tractor and one or more brakes for the wheels and is coupled to the tractor. The input device receives an instruction to operate at least one of the tractor and the walker. In response to reception of the instruction by the input device, the controller determines whether or not to permit the tractor and/or the walker to perform a process based on the instruction, in accordance with a current state of the robot, the current state being one of a plurality of states of the robot. Each state is represented by using values of items, one of the items being an item indicating whether or not the one or more brakes are applied to the wheels.
Abstract:
A master motion information obtaining unit obtains at least one or more pieces of master motion information including a position, a posture, a speed, and an angular velocity of a master arm mechanism. A physical information obtaining unit obtains physical information of an operator including an arm weight of the operator. A master motion information correcting unit generates corrected master motion information where an amount of correction of the master motion information is corrected such that heavier the arm weight of the operator included in the physical information, larger a movement of a slave arm. A slave controller controls a slave arm mechanism, according to the corrected master motion information.
Abstract:
An autonomous travel-type cleaner includes a housing, a drive unit for moving the housing, an incoming call detector that detects whether or not there is an incoming call to a communication terminal, a person detector that detects whether or not a person is present within a first range, an incoming call notification unit (for example, a light source and a speaker) for notifying of presence of an incoming call, and a controller. The controller controls a notification operation of the incoming call notification unit based on a detection result of the person detector and a detection result of the incoming call detector.