Abstract:
An imaging optical system includes a plurality of lens groups each moving such that spaces between each one of the plurality of lens groups change during a zooming. The imaging optical system conjugates a conjugate point on a magnification side and an intermediate imaging position, and conjugates a conjugate point on a reduction side and the intermediate imaging position. The imaging optical system includes a first lens group located at a furthest place on the magnification side and a rear group in this order from the magnification side toward the reduction side. The first lens group includes a field curvature correction lens group moving along an optical axis when an amount of a field curvature is changed, and a focusing lens group. The imaging optical system satisfies condition (4) below: |{(1−βcw2)×βcrw2}/{(1−βfw2)×βfrw2}|
Abstract:
A lens system which includes a lens group including at least one lens element and forms an image on an image sensor which is rectangular with a first side and a second side greater than or equal to the first side in length, the lens system including: in order from an object side to an image surface side, a front lens group; a diaphragm; and a rear lens group, wherein at least one of the front lens group and the rear lens group includes a freeform surface lens asymmetric about an optical axis, and the lens system satisfies 1
Abstract:
A dome camera includes a camera body rotatable and including a lens system and an imaging device, a correction optical system having a curved shape, and a dome cover covering the camera body and the correction optical system. The correction optical system performs at least any one of tilt, decenter, and rotation in accordance with a rotation angle of the camera body.
Abstract:
A zoom lens system, in order from an object side to an image side, comprising: a first lens unit having positive optical power; a second lens unit having negative optical power; a third lens unit having positive optical power; a fourth lens unit having negative optical power, a fifth lens unit having negative optical power; and a sixth lens unit having positive optical power, wherein the condition: 3.5
Abstract:
An optical tactile sensor includes: an elastic member including a contact surface to be brought into contact with an object; a holding member including a window portion and contacting and holding the elastic member, the window portion being transparent; a light source; and a camera that photographs a shape of the contact surface through the window portion, wherein the elastic member includes: a first portion including the contact surface; and a second portion formed integrally with the first portion and disposed between the first portion and the window portion, the second portion being transparent, and the second portion has a hardness higher than a hardness of the first portion.
Abstract:
A projection lens system that projects an image of a reduction side into a magnification side includes a diaphragm, a plurality of positive lenses, and a plurality of negative lenses. The plurality of positive lenses include a first positive lens closer to the magnification side than the diaphragm is and closest to the diaphragm, a second positive lens second closest to the diaphragm after the first positive lens on the magnification side, a third positive lens closer to the reduction side than the diaphragm is and closest to the diaphragm. The plurality of negative lenses include a first negative lens closer to the magnification side than the diaphragm is and closest to the diaphragm, and a second negative lens closer to the reduction side than the diaphragm is and closest to the diaphragm. The lenses have transmittances larger than threshold values, respectively.
Abstract:
The lens system forms an image conjugately between each of a magnification conjugate point and a reduction conjugate point; and an intermediate image-forming position. The lens system includes a magnification optical system with positive power, the magnification optical system having a plurality of lens elements and positioned closer to the magnification side than the intermediate image-forming position; and a relay optical system with positive power, the relay optical system having a plurality of lens elements and positioned closer to the reduction side than the intermediate image-forming position. The lens system satisfies following conditions (1) and (2). 0.08≤fp/fr≤0.8 (1) {Ymax−ft·tan(ωmax)}/{ft·tan(ωmax)}≤−0.3 (2) where fr is composite focal length of the relay optical system, fp is composite focal length of the magnification optical system, Ymax is a radius of an effective image diameter, ωmax is a maximum half view angle, and ft is the focal length of the lens system.
Abstract:
A projection lens system that projects an image of a reduction side into a magnification side includes a diaphragm, a plurality of positive lenses, and a plurality of negative lenses. The plurality of positive lenses include a first positive lens closer to the magnification side than the diaphragm is and closest to the diaphragm, a second positive lens second closest to the diaphragm after the first positive lens on the magnification side, a third positive lens closer to the reduction side than the diaphragm is and closest to the diaphragm. The plurality of negative lenses include a first negative lens closer to the magnification side than the diaphragm is and closest to the diaphragm, and a second negative lens closer to the reduction side than the diaphragm is and closest to the diaphragm. The lenses have transmittances larger than the respective lower limit values.
Abstract:
A zoom lens system according to the present disclosure includes a plurality of lens groups each of which is made up of at least one lens element. The zoom lens system includes, in order from an object side to an image side: a first focusing lens group having a negative power; and a second focusing lens group having a positive power, wherein when zooming is performed from a wide end to a telephoto end, the first focusing lens group and the second focusing lens group move along an optical axis, when focusing is performed from an infinity focusing state to a proximity object focusing state, the first focusing lens group and the second focusing lens group move to perform the focusing, and a predetermined condition is satisfied.