Abstract:
A directivity control apparatus is provided which controls a directivity of a sound collected by a first sound collector including a plurality of microphones. The directivity control apparatus forms a directivity of the sound in a direction toward a position of a monitoring target in an image displayed on a display. Information on the position of the monitoring target in the image displayed on the display is obtained. The directivity of the sound is changed toward the position of the monitoring target in accordance with a movement of the monitoring target by referring to the obtained information on the position of the monitoring target.
Abstract:
A directivity control method is provided for controlling a directivity of a sound collected by a first sound collector including a plurality of microphones. The directivity control method includes: forming a directivity of the sound in a direction toward a monitoring target corresponding to a first designated position in an image displayed on a display; obtaining information on a second designated position in the image displayed on the display, designated in accordance with a movement of the monitoring target, and changing the directivity of the sound toward the monitoring target corresponding to the second designated position by referring to the information on the second designated position.
Abstract:
A directivity control apparatus controls a directivity of a sound collected by a first sound collecting unit including a plurality of microphones. The directivity control apparatus includes a directivity forming unit, configured to form a directivity of the sound in a direction toward a monitoring target corresponding to a first designated position in an image displayed on a display unit, and an information obtaining unit, configured to obtain information on a second designated position in the image displayed on the display unit, designated in accordance with a movement of the monitoring target. The directivity forming unit is configured to change the directivity of the sound toward the monitoring target corresponding to the second designated position by referring to the information on the second designated position obtained by the information obtaining unit.
Abstract:
In a sound source display system, an omnidirectional camera captures an image of a monitoring area. A microphone array collects a voice in the monitoring area. A monitoring monitor displays the image of an imaging area captured by the omnidirectional camera. A sound pressure calculator in a directivity control device calculates a sound pressure indicating a source of a sound in the image of the imaging area using voice data of the voice collected by the microphone array. An output controller in the directivity control device compares the sound pressure and threshold values (first threshold value, second threshold value), and causes sound image information in which the sound pressure is converted into visual information according to the result of comparison, to be displayed on the monitoring monitor so as to be superimposed on the image of the imaging area.
Abstract:
A directionality control system includes: a camera; a microphone provided as a separate body from the camera; a display that displays video data captured by the camera; and a processor that computes a sound collection direction, which is directed from the microphone toward a sound position corresponding to a designated position in the video data. The processor computes the sound collection direction by using parameters including: a first height of the camera from a reference surface, a second height of the microphone from the reference surface, a third height of a computation reference point from the reference surface, the computation reference point being positioned in the sound collection direction at a position different from the sound position, a direction which is directed from the camera toward the sound position, and a fourth height of the sound position from the reference surface.
Abstract:
A system includes an imaging part that captures an image, a sound collection part that collects sounds, a display part that displays image data captured by the imaging part, a directive direction calculation part that calculates a directive direction which directs toward a sound position corresponding to a designated position of the image data from the sound collection part when any position of the displayed image data is designated, and a control part that forms a directivity in the sounds in the calculated directive direction. The control part controls output of the sounds collected by the sound collection part or output of the sounds which are collected by the sound collection part and of which the directivity is formed, or suspends collection of sounds in the sound collection part, when it is determined that the sound position is included in a preset protection region.
Abstract:
A failure detection system includes an omnidirectional microphone array device having a plurality of microphone elements and a directivity control device that calculates a delay time of a voice propagated from a sound source to each microphone element and forms a directivity of the voice using the delay time and the voice collected by the omnidirectional microphone array device, and detects a failure of the microphone element. A smoothing unit calculates an average power of one microphone element. An average calculator calculates a total average power of a plurality of usable microphone elements included in the omnidirectional microphone array device. A comparison unit compares whether or not a difference between the average power and the total average power exceeds a range of ±6 dB, and determines whether the microphone element is in failure based on the comparison result.
Abstract:
An audio processing system, includes: an audio collector that collects audio in a non-directivity state using audio collection elements; an operator receives an input of one or more designation directions for audio emphasis for switching from the non-directivity state to a directivity state; an emphasis processor that generates audio data in the directivity state obtained by performing an emphasis process on the audio data in the designation direction from the audio collector using audio data collected by the audio collector according to the input of the designation direction; a volume adjustor that adjusts volume of the audio data in a directivity state; and an audio output that outputs the audio in a non-directivity state collected by the audio collector or the audio in a directivity state after the volume has been adjusted by the volume adjustor.
Abstract:
In a sound source display system, an omnidirectional camera captures an image of a monitoring area. A microphone array collects a voice in the monitoring area. A monitoring monitor displays the image of an imaging area captured by the omnidirectional camera. A sound pressure calculator in a directivity control device calculates a sound pressure indicating a source of a sound in the image of the imaging area using voice data of the voice collected by the microphone array. An output controller in the directivity control device compares the sound pressure and threshold values (first threshold value, second threshold value), and causes sound image information in which the sound pressure is converted into visual information according to the result of comparison, to be displayed on the monitoring monitor so as to be superimposed on the image of the imaging area.