Abstract:
A plurality of imaging optical systems includes at least two imaging optical systems, and each imaging optical system includes an identical diaphragm member. Each imaging optical system includes in order from an object side, a front lens unit having a positive refractive power, a focusing lens unit having a negative refractive power, and a rear lens unit having a positive refractive power. The diaphragm member is disposed near the focusing lens unit. At the time of focusing, only the focusing lens unit moves on an optical axis. Each imaging optical system satisfies the following conditional expression (1), and the plurality of imaging optical systems satisfies the following conditional expressions (2) and (3). 0.5
Abstract:
An image forming lens system includes an aperture stop, and an image-side lens unit group which is disposed on an image side of the aperture stop. The image-side lens unit group includes a first image-side lens unit having a negative refractive power, a second image-side lens unit having a positive refractive power, and a third image-side lens unit having a negative refractive power. Any one of the first image-side lens unit, the second image side lens unit, and the third image-side lens unit is a focusing lens unit which moves along the optical axis at the time of focusing, and the following conditional expression (1) is satisfied: 0.06
Abstract:
An image forming lens system includes a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit. The first lens unit includes a front-side lens unit having a positive refractive power and a rear-side lens unit in order from the object side. The second lens unit moves at a time of focusing. The third lens unit includes a positive lens element. Each lens element in the front-side lens unit is a lens element that satisfies following Conditional Expression (a). The rear-side lens unit includes a negative lens element and a positive lens element. The front-side lens unit includes a diffractive lens component having a diffractive lens surface. The diffractive lens component has a positive refractive power. Following Conditional Expression (1) is satisfied: −0.7≤f/fLens (a) 0.015≤ΔGFGR/f≤0.25 (1).
Abstract:
A variable magnification optical system includes, sequentially from an object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, a fourth lens unit, and a fifth lens unit having a positive refractive power, and each of the lens units makes a different movement relatively to a lens unit that is adjacently positioned at least at one of a time of changing magnification, a time of focusing, and a time of image stabilization.
Abstract:
A telephoto lens includes a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit, and the first lens unit includes a front-side lens unit having a positive refractive power and a rear-side lens unit, and the second lens unit moves at the time of focusing, and the third lens unit has a positive lens and a negative lens, and the front-side lens unit includes lenses positioned closer to the object side than a predetermined negative lens that satisfies Conditional Expression (a), and the rear-side lens unit has the predetermined negative lens and a positive lens, and Conditional Expressions (1A) and (14) are satisfied: 0.5≦|f/fLn| (a), 0.015≦DGFGR/f≦0.25 (1A), and 0.19≦DGFairmax/DGF≦1.0 (14).
Abstract:
A zoom lens includes a front unit having a negative refractive power and a rear unit having a positive refractive power, which includes an aperture stop, and the front unit includes a first lens having a negative refractive power, and the first lens has a meniscus shape of which a convex surface is directed toward the object side, and the rear unit includes a first lens unit A and a second lens unit B, and at the time of zooming from a wide angle end to a telephoto end, a distance between the front unit and the rear unit changes.